Body's ibuprofen, SPARC, reduces inflammation and thus bladder cancer development and metastasis

January 16, 2013

Cancer researchers are increasingly aware that in addition to genetic mutations in a cancer itself, characteristics of the surrounding tissue can promote or suppress tumor growth. One of these important tissue characteristics is inflammation – most cancers prosper in and attach to inflamed tissue and so many cancers have developed ways to create it.

A University of Colorado Cancer Center study published today in the shows that the protein SPARC (Secreted Protein Acidic and Rich in Cysteine) acts much like an anti-inflammatory drug, attempting to heal tissues inflamed by tumors. Likewise, cancers – for example, in this study – have developed ways to turn off the production of SPARC, thus allowing growth and metastasis, especially to the lung where bladder cancer is frequently fatal.

"In fact, we show the effects of SPARC go beyond even this anti-inflammatory role. Additionally, the protein is involved in disallowing migrating from attaching at possible metastasis sites and stopping the production of new blood vessels needed to feed tumor tissue," says Dan Theodorescu, MD, PhD, director of the University of Colorado Cancer Center and the study's senior author.

The study started by evaluating SPARC levels in human bladder cancer samples. In less aggressive cancers, both the tumor and the surrounding tissue made SPARC. In more aggressive cancers, it was just the surrounding tissue that made SPARC – the aggressive tumor itself had suppressed production of the protein. In these human bladder , more SPARC was associated with longer survival.

This distinction between SPARC made in the tumor and SPARC made in the surrounding tissue largely explains previous work that found high SPARC in aggressive tumors and so suggested a possible tumor-promoting role for the protein. Instead, it seems that surrounding healthy tissue may respond to a growing tumor by increasing SPARC production, which it hopes will mute the tumor. Thus high SPARC that is in fact an attempt at tumor suppression can be coincidentally associated with when the entire tumor is examined. Healthy tissue turns up SPARC to mute tumors. Aggressive cancers turn down SPARC to promote tumors.

Then Theodorescu and colleagues turned to animal models without the ability to manufacture SPARC. Not only was bladder cancer quicker to develop in these models, but the cancer was also more likely to travel to invade lung tissue. When SPARC was added to these models, and metastasis was reduced.

"This is a comprehensive portrait of SPARC function using human and murine bladder cancer as a model, and the first to clearly distinguish between the role of SPARC generated in the tumor and the role of the protein generated in the surrounding tissue," says Theodorescu. "We hope this provides the rational basis for further exploring manipulation of SPARC as a therapeutic intervention."

Explore further: Lack of oxygen in cancer cells leads to growth and metastasis

Related Stories

Lack of oxygen in cancer cells leads to growth and metastasis

September 13, 2012
(Medical Xpress)—It seems as if a tumor deprived of oxygen would shrink. However, numerous studies have shown that tumor hypoxia, in which portions of the tumor have significantly low oxygen concentrations, is in fact linked ...

Like prostate cancer, bladder cancer patients may benefit from anti-androgen therapy

September 24, 2012
Bladder cancer patients whose tumors express high levels of the protein CD24 have worse prognoses than patients with lower CD24. A University of Colorado Cancer Center study published today in the Proceedings of the National ...

Major study stops bladder cancer from metastasizing to lungs

March 12, 2012
The diagnosis of localized bladder cancer carries an 80 percent five-year survival rate, but once the cancer spreads, the survival rate at even three years is only 20 percent. A major study published today in the Journal ...

Protein RAL associated with aggressive characteristics in prostate, bladder and skin cancers

May 17, 2012
We have known for years that when the proteins RalA and RalB are present, cells in dishes copy toward aggressive forms of cancer. However, until this week, no study had explored the effects of RAL proteins in human cancers ...

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Recommended for you

Researchers release first draft of a genome-wide cancer 'dependency map'

July 27, 2017
In one of the largest efforts to build a comprehensive catalog of genetic vulnerabilities in cancer, researchers from the Broad Institute of MIT and Harvard and Dana-Farber Cancer Institute have identified more than 760 genes ...

Cancer-death button gets jammed by gut bacterium

July 27, 2017
Researchers at Michigan Medicine and in China showed that a type of bacterium is associated with the recurrence of colorectal cancer and poor outcomes. They found that Fusobacterium nucleatum in the gut can stop chemotherapy ...

Long-sought mechanism of metastasis is discovered in pancreatic cancer

July 27, 2017
Cells, just like people, have memories. They retain molecular markers that at the beginning of their existence helped guide their development. Cells that become cancerous may be making use of these early memories to power ...

Blocking the back-door that cancer cells use to escape death by radiotherapy

July 27, 2017
A natural healing mechanism of the body may be reducing the efficiency of radiotherapy in breast cancer patients, according to a new study.

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Glowing tumor technology helps surgeons remove hidden cancer cells

July 27, 2017
Surgeons were able to identify and remove a greater number of cancerous nodules from lung cancer patients when combining intraoperative molecular imaging (IMI) - through the use of a contrast agent that makes tumor cells ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.