The social circuits that track how we like people and ideas

April 7, 2014

Whether at the office, dorm, PTA meeting, or any other social setting, we all know intuitively who the popular people are – who is most liked – even if we can't always put our finger on why. That information is often critical to professional or social success as you navigate your social networks. Yet until now, scientists have not understood how our brains recognize these popular people. In new work, researchers say that we track people's popularity largely through the brain region involved in anticipating rewards.

"Being able to track other people's status in your group is incredibly important in survival terms," says Kevin Ochsner of Columbia University. "Knowing who is popular or likeable is critically important in times of need or distress, when you seek an alliance, or need help – whether physical or political – etc." While sociologists, psychologists, and anthropologists have long studied these group dynamics, neuroscientists have only begun to scratch the surface of how we think about people's social status.

That is all changing, though, Ochsner says with many areas of work bringing together social psychology and sociology with cognitive neuroscience to better understand how individual brain processes connect to group membership. As will be presented today at the annual meeting of the Cognitive Neuroscience Society (CNS) in Boston, researchers are now studying at the neural level everything from social to how ideas successfully spread in groups.

Like me?

Someone attains social status in a group through either power – control over resources – or popularity – how well-liked they are. Past research on status has largely focused on power, but Ochsner and his colleagues wanted to specifically look at popularity, capitalizing on social network analysis techniques already available from sociology.

"Now that we have a simple way of defining for a given group who is popular, we can then ask how it is that the brain is representing what it means for someone to have this kind of liking-based status, or popularity, within the context of a group," Ochsner says.

In the new work, Ochsner's team recruited people from student organizations to come into the lab and rate how much they like each other. The researchers then used those ratings to mathematically determine who is most liked in each social network.

Then some weeks later, the researchers brought the same individuals back into the lab and had them lie in an fMRI scanner while showing them faces of people. The participants would determine if the faces were from people in their own organization or not; composite faces – not real people – were added as controls. The researchers wanted to see how areas of the participants' brain responded to viewing faces of those rated as popular within the group – increasing or decreasing specific brain activity based on popularity.

With each social network, the researchers found the same pattern of brain activity in individuals viewing the faces of popular people, identifying two critical systems in the brain: the system involved in emotional evaluation and reward (ventral striatum, amygdala, ventromedial prefrontal cortex) and the system involved in social cognition, or our ability to think about the feelings and intentions of others (temporoparietal junction, precuneus, and dorsomedial prefrontal cortex). "We find that activity in these two networks scales up with the popularity of another individual, and that's kind of neat because it's consistent with two accounts of how we track the status of other individuals," Ochsner says.

The first account posits that, over time, we learn who is likeable by experiencing the rewarding effects of interacting with someone. Even if you personally do not like someone, you may know that person is likeable by others based on observing interactions with other group members. This would explain why the reward systems in the brain react to the sight of popular people – as we are anticipating the benefits of interacting with them. The other account is that we need to be able to think about the mental states, beliefs, and thoughts of other people – in particular those with high status – in order to form coalitions, ask for help, or otherwise work within the group.

"What we see is that even with brief presentations of faces – the faces are only on the screen for about a second – these systems are coming online," Ochsner says. Moreover, the emotional evaluation system controls the response of the social cognition system: "The emotional evaluation system really holds the key to unlocking the popularity of group members and tells the social cognition systems, 'hey this is a person with whom I can expect rewarding interactions', triggering the person to think about what the popular individual's thoughts, intentions, and feelings are."

They also found that the more popular someone is within a group, the more strongly these brain systems react to the sight of another popular person. This finding suggests that popular people are "exquisitely sensitive to how likeable other individuals are and that they can then tailor their behavior appropriately," Ochsner says.

Importantly, Ochsner points out that in the studies, they controlled for a number of factors, including attractiveness, trustworthiness, and idiosyncratic preferences of individuals, to ensure that the popularity measure held true for the individuals in the group on average. Also, they first independently located the brain systems involved, using tasks designed to identify reward learning and social cognition.

The work not only addresses the basic science question of how we track social popularity in the brain but also could eventually inform research on autism and other disorders that impair people's ability to judge . "You could also ask questions about how can you bring people from the periphery, the not-liked part of a group, into the liked part of a group," Ochsner says. And, he says, the work has enormous implications in the business world where the effectiveness of a hierarchical structure often comes down to who is most liked.

Like my ideas?

The very same brain regions involved in how we see other people's popularity also shape how well we communicate messages to others, recent research has found. Emily Falk of the University of Pennsylvania and colleagues have found that activity within the social cognition and emotional evaluation and reward systems can actually predict how effectively someone can sell their ideas to others and how well ideas spread.

"Neural activity within the brain of an initial idea recipient can tell us how successfully an idea will be re-transmitted," Falk says. "The brain activity in that initial person gives hints about how others, who never saw the original message, are likely to react to messages as they are transmitted from person to person, and also who are likely to be the best idea salespeople."

Falk will be presenting at the CNS meeting a growing body of work about not only the neural systems that make someone a good "idea salesperson" but also the role of someone's position within a social network in idea transmission.

In her lab's newest work, with lead author Matthew Brook O'Donnell, the team first used Facebook to map out people's status within their social networks. Then using fMRI imaging, they found that individuals with more opportunities for brokering information between different groups of people showed increased activity in brain regions that support thinking about the mental states of others. This could enable them to better respond to social cues when making recommendations to others.

"We know that social environments affect people in all kinds of ways, and Matt and I have become very interested in how social network position influences all kinds of basic processes in the ," Falk says. The new work seeks to explain the variation found in the previous research in how good people were at being idea salespeople.

The work is giving insights into what makes ideas stick. For example, though the current results are correlational, it is possible that if the systems are most critical in spreading ideas, then people should invest more energy in thinking about what other people are thinking and feeling to get the best results.

"People may sometimes decide what to share based on their own preferences, but, ultimately, we are hardwired to be social, and those social circuits seem to forecast which ideas catch on," she says. "Likewise, people who show more activity in those circuits ultimately have more success in convincing others to get on board with their preferred ideas."

The explosion of new communications tools, such as social media, combined with new analytic tools is dramatically helping scientists understand how ideas spread, Falk says. "Ultimately, we are working on forecasting which ideas will go viral and what kind of people and messages can best make that happen. We hope that this kind of information can be used to create more effective public health campaigns that address major societal challenges such as obesity and cigarette smoking."

Explore further: Brain scans link concern for justice with reason, not emotion

More information: Falk and Ochsner are presenting their work, along with Lisa F. Barrett and Dharshan Kumaran, in the symposium "The Neuroscience of Social Networks," Monday, April 7, 2014, at the CNS annual meeting in Boston. More than 1,500 scientists are attending the meeting in Boston, MA, from April 5-8, 2014.

Related Stories

Brain scans link concern for justice with reason, not emotion

March 28, 2014
(Medical Xpress)—People who care about justice are swayed more by reason than emotion, according to new brain scan research from the Department of Psychology and Center for Cognitive and Social Neuroscience.

Memory's crucial impact on maintaining social bonds

March 4, 2014
Memory's crucial impact on our ability to establish and maintain social bonds is the focus of a new book, "Examining the Role of Memory in Social Cognition" (Frontiers), edited by Cornell neuroscientist Nathan Spreng.

New links between social status and brain activity

November 13, 2013
New studies released today reveal links between social status and specific brain structures and activity, particularly in the context of social stress. The findings were presented at Neuroscience 2013, the annual meeting ...

How the brain creates the 'buzz' that helps ideas spread

July 5, 2013
(Medical Xpress)—How do ideas spread? What messages will go viral on social media, and can this be predicted? UCLA psychologists have taken a significant step toward answering these questions, identifying for the first ...

Our own status affects the way our brains respond to others

April 28, 2011
Our own social status influences the way our brains respond to others of higher or lower rank, according to a new study reported online on April 28 in Current Biology. People of higher subjective socioeconomic status show ...

A single spray of oxytocin improves brain function in children with autism

December 2, 2013
A single dose of the hormone oxytocin, delivered via nasal spray, has been shown to enhance brain activity while processing social information in children with autism spectrum disorders, Yale School of Medicine researchers ...

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cellular roots of anxiety identified

July 26, 2017
From students stressing over exams to workers facing possible layoffs, worrying about the future is a normal and universal experience. But when people's anticipation of bad things to come starts interfering with daily life, ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.