What songbirds tell us about how we learn

April 8, 2014
What songbirds tell us about how we learn
This shows McGill University, Sarah Woolley's song birds. Credit: McGill University, Sarah Woolley

When you throw a wild pitch or sing a flat note, it could be that your basal ganglia made you do it. This area in the middle of the brain is involved in motor control and learning. And one reason for that errant toss or off-key note may be that your brain prompted you to vary your behavior to help you learn, from trial-and-error, to perform better.

But how does the brain do this, how does it cause you to vary your behavior?

Along with researchers from the University of California, San Francisco, Indian Institute of Science Education and Research and Duke University, Professor Woolley investigated this question in songbirds, which learn their songs during development in a manner similar to how humans learn to speak. In particular, songbirds memorize the of their father or tutor, then practice that song until they can produce a similar song.

"As adults, they continue to produce this learned song, but what's interesting is that they keep it just a little bit variable" says Woolley. "The variability isn't a default, it isn't that they can't produce a better version, they can—in particular when they sing to a female. So when they sing alone and their song is variable it's because they are actively making it that way."

The team used this change in the variability of the song to look at how the activity of single cells in different parts of the brain altered their activity depending on the social environment.

"We found that the social modulation of variability emerged within the basal ganglia, a brain area known to be important for learning and producing movements not only in birds but also in mammals, including humans" says Woolley. "This indicates that one way that the basal ganglia may be important in motor learning across species is through its involvement in generating variability."

The researchers studied song birds because they have a cortical-basal ganglia circuit that is specific for singing. In contrast, for most behaviors in other species, the cortical-basal ganglia cells and circuits that are important for particular behaviors, like learning to walk, may be situated right next to, or even intermingled with cells and circuits important for other behaviors. "The evolution in songbirds of an identifiable circuit for a single complex behavior gives us a tremendous advantage as we try to parse out exactly what these parts of the do and how they do it," says Woolley.

Useful for Parkinson's disease

The is dramatically affected in illnesses such as Parkinson's and Huntington disease. The team's findings may eventually be relevant to understanding changes to and flexibility in movement that occur in those diseases.

"These are the kind of questions that we are now starting to pursue in the lab: how variability is affected when you radically manipulate the system akin to what happens during disease", says Woolley.

Explore further: Deconstructing motor skills: Separate aspects of development highlighted in study

More information: To read the article "Emergence of context-dependent variability across a basal ganglia network" in Neuron: www.sciencedirect.com/science/ … ii/S0896627314000701

Related Stories

Deconstructing motor skills: Separate aspects of development highlighted in study

September 30, 2013
Hitting the perfect tennis serve requires hours and hours of practice, but for scientists who study complex motor behaviors, there always has been a large unanswered question—what is the brain learning from those hours ...

Genetic defect keeps verbal cues from hitting the mark

November 21, 2013
A genetic defect that profoundly affects speech in humans also disrupts the ability of songbirds to sing effective courtship tunes. This defect in a gene called FoxP2 renders the brain circuitry insensitive to feel-good chemicals ...

How does the brain create sequences?

January 26, 2014
When you learn how to play the piano, first you have to learn notes, scales and chords and only then will you be able to play a piece of music. The same principle applies to speech and to reading, where instead of scales ...

Songbirds' learning hub in brain offers insight into motor control

May 20, 2012
To learn its signature melody, the male songbird uses a trial-and-error process to mimic the song of its father, singing the tune over and over again, hundreds of times a day, making subtle changes in the pitch of the notes. ...

Recommended for you

Theory: Flexibility is at the heart of human intelligence

November 19, 2017
Centuries of study have yielded many theories about how the brain gives rise to human intelligence. Some neuroscientists think intelligence springs from a single region or neural network. Others argue that metabolism or the ...

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

Researchers identify potential mediator for social memory formation

November 15, 2017
Research by a group of scientists at the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine) have discovered that a tiny brain region plays a critical role in the formation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.