Researchers transplant regenerated oesophagus

April 15, 2014, Karolinska Institutet
After two weeks in vivo regeneration, the scaffold of the oesophagus is covered by a multi-layered, keratinized epithelium. Credit: Paolo Macchiarini / Nature Communications

Tissue engineering has been used to construct natural oesophagi, which in combination with bone marrow stem cells have been safely and effectively transplanted in rats. The study, published in Nature Communications, shows that the transplanted organs remain patent and display regeneration of nerves, muscles, epithelial cells and blood vessels.

The new method has been developed by researchers at Karolinska Institutet in Sweden, within an international collaboration lead by Professor Paolo Macchiarini. The technique to grow human tissues and organs, so called , has been employed so far to produce urinary bladder, trachea and blood vessels, which have also been used clinically. However, despite several attempts, it has been proven difficult to grow tissue to replace a damaged oesophagus.

In this new study, the researchers created the bioengineered organs by using oesophagi from rats and removing all the cells. With the cells gone, a scaffold remains in which the structure as well as mechanical and chemical properties of the organ are preserved. The produced scaffolds were then reseeded with cells from the . The adhering cells have low immunogenicity which minimizes the risk of immune reaction and graft rejection and also eliminates the need for immunosuppressive drugs. The cells adhered to the biological scaffold and started to show organ-specific characteristics within three weeks.

The cultured tissues were used to replace segments of the oesophagus in rats. All rats survived and after two weeks the researchers found indications of the major components in the regenerated graft: epithelium, , and nerves.

"We believe that these very promising findings represent major advances towards the clinical translation of tissue engineered esophagi", says Paolo Macchiarini, Director of Advanced center for translational regenerative medicine (ACTREM) at Karolinska Institutet.

Tissue engineered organs could improve survival and quality of life for the hundreds of thousands of patients yearly diagnosed with oesophageal disorders such as cancer, congenital anomalies or trauma. Today the patients' own intestine or stomach is used for esophageal replacements, but satisfactory function rarely achieved. Cultured tissue might eliminate this current need and likely improve surgery-related mortality, morbidity and functional outcome.

Explore further: Leading surgeons warn against media hype about tracheal regeneration

More information: 'Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats', Sebastian Sjöqvist, Philipp Jungebluth, Mei Ling Lim, Johannes C. Haag, Ylva Gustafsson, Greg Lemon, Silvia Baiguera, Miguel Angel Burguillos, Costantino Del Gaudio, Alexander Sotnichenko, Karolina Kublickiene, Henrik Ullman, Heike Kielstein, Peter Damberg, Alessandra Bianco, Rainer Heuchel, Ying Zhao, Domenico Ribatti, Cristián Ibarra, Bertrand Joseph, Doris A. Taylor & Paolo Macchiarini, Nature Communications, online 15 April 2014, DOI: 10.1038/ncomms4562

Related Stories

Leading surgeons warn against media hype about tracheal regeneration

March 25, 2014
Reports of the two earliest tissue-engineered whole organ transplants using a windpipe, or trachea, created using the patient's own stem cells, were hailed as a breakthrough for regenerative medicine and widely publicized ...

Sweden hospital in lab-made windpipe transplant

July 7, 2011
A 36-year-old man who had tracheal cancer has received a new lab-made windpipe seeded with his own stem cells in a procedure in Sweden they call the first successful attempt of its kind, officials said Thursday.

Laboratory-grown vaginas implanted in patients

April 10, 2014
Scientists reported today the first human recipients of laboratory-grown vaginal organs. A research team led by Anthony Atala, M.D., director of Wake Forest Baptist Medical Center's Institute for Regenerative Medicine, describes ...

Bioprinting new organs

April 3, 2014
With the new 3D Bioprinter, the research group of Professor Paul Gatenholm at the Department of Chemical and Biological Engineering exploits new possibilities of tissue engineering and organ regeneration.

Researchers engineer reconstructive tissue for transplant

April 7, 2014
A breakthrough by Israeli researchers could speed recovery and limit scarring and disfigurement for patients who have suffered large soft tissue trauma - as often occurs with serious injury or cancer surgery. By biomedically ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.