Researchers uncover link between Down syndrome and leukemia

April 20, 2014
A Wright's stained bone marrow aspirate smear from a patient with precursor B-cell acute lymphoblastic leukemia. Credit: VashiDonsk/Wikipedia

Although doctors have long known that people with Down syndrome have a heightened risk of developing acute lymphoblastic leukemia (ALL) during childhood, they haven't been able to explain why. Now, a team of Dana-Farber Cancer Institute investigators has uncovered a connection between the two conditions.

In a study posted online today by the journal Nature Genetics, the researchers track the genetic chain of events that links a chromosomal abnormality in Down to the cellular havoc that occurs in ALL. Their findings are relevant not only to people with Down syndrome but also to many others who develop ALL.

"For 80 years, it hasn't been clear why children with Down syndrome face a sharply elevated risk of ALL," said the study's lead author, Andrew Lane, MD, PhD, of Dana-Farber's Division of Hematologic Neoplasia. "Advances in technology – which make it possible to study and leukemias that model Down syndrome in the laboratory – have enabled us to make that link."

People with Down syndrome have an increased risk for a variety of health problems, including heart defects, respiratory and hearing difficulties, and thyroid conditions. Their risk for childhood ALL is 20 times that of the general population.

The syndrome occurs in people who have an extra copy of a single chromosome, known as chromosome 21. The addition may involve the entire chromosome or a portion of it.

To trace the link between Down syndrome and ALL – specifically, the most common form of the disease known as B cell ALL, or B-ALL – Lane, who is also a medical oncologist in the Dana-Farber/Brigham and Women's Cancer Center Adult Stem Cell Transplantation Program, and his colleagues acquired a strain of mice that carry an extra copy of 31 genes found on chromosome 21 in humans.

"B-ALL occurs when the body produces too many immature B cells, which are a type of white blood cell that normally fights infections," Lane explained. "When we tested the mice's B cells in the laboratory, we found they were abnormal and grew uncontrollably – just as B cells from B-ALL patients do."

The researchers then scanned the mice's B cells to ascertain their "molecular signature" – the pattern of gene activity that distinguished them from normal B cells in mice. The chief difference was that in the , the group of proteins called PRC2 was not functioning. Somehow, the loss of PRC2 was spurring the B cells to divide and proliferate before they were fully mature.

To confirm that a shutdown of PRC2 is critical to the formation of B-ALL in people with Down syndrome, Lane's team focused on the genes controlled by PRC2. Using two sets of B-ALL cell samples – one from patients with Down syndrome, the other from patients without the syndrome – they measured the activity of thousands of different genes, looking for differences between the two sets. About 100 genes turned out to be much more active in the Down syndrome group, and all of them were under control of PRC2. When PRC2 is silenced – as it is in the B cells of Down syndrome patients – those 100 genes respond with a burst of activity, driving cell growth and division.

The question then was, what gene or group of genes was stifling PRC2 in Down syndrome patients' B cells? Using cells from the mice with an extra copy of 31 genes, the investigators systematically switched off each of those genes to see its effect on the cells. When they turned off the gene HMGN1, the stopped growing and died.

"We concluded that the extra copy of HMGN1 is important for turning off PRC2, and that, in turn, increases the cell proliferation," Lane remarked. "This provides the long-sought after molecular link between Down syndrome and the development of B cell ALL."

Although there are currently no drugs that target HMGN1, which could potentially short-circuit the leukemia process in people with Down syndrome, the researchers suggest that drugs that switch on PRC2 could have an anti-leukemic effect in some of those people. Work is under way to improve these drugs, known as histone demethylase inhibitors, so they can be tested in cell samples and animal models.

As other forms of B-ALL also have the same 100-gene signature as the one discovered for B-ALL associated with Down syndrome, drug agents that target PRC2 might be effective in those cancers as well, Lane added.

Explore further: Down's chromosome cause genome-wide disruption

More information: Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation, Nature Genetics, dx.doi.org/10.1038/ng.2949

Related Stories

Down's chromosome cause genome-wide disruption

April 16, 2014
The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Gene-silencing strategy opens new path to understanding Down Syndrome

October 22, 2013
The first evidence that the underlying genetic defect responsible for trisomy 21, also known as Down syndrome, can be suppressed in laboratory cultures of patient-derived stem cells was presented today (Oct. 22) at the American ...

Down syndrome neurons grown from stem cells show signature problems

May 27, 2013
Down syndrome, the most common genetic form of intellectual disability, results from an extra copy of one chromosome. Although people with Down syndrome experience intellectual difficulties and other problems, scientists ...

Team uncovers new insight into cell development and cancer

December 27, 2012
Long-standing research efforts have been focused on understanding how stem cells, cells capable of transforming into any type of cell in the body, are capable of being programmed down a defined path to contribute to the development ...

Researchers unravel molecular roots of Down syndrome

March 24, 2013
Sanford-Burnham researchers discover that the extra chromosome inherited in Down syndrome impairs learning and memory because it leads to low levels of SNX27 protein in the brain.

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.