The ancient Greek riddle that helps us understand modern disease threats

May 2, 2014 by Adam Kucharski, The Conversation
Finding an Achilles' heel. Credit: Γιάννης Ζήσης

Even in the face of death, Zeno of Elea knew how to frustrate people. Arrested for plotting against the tyrant Demylus, the ancient Greek philosopher refused to co-operate. The story goes that, rather than talk, he bit off his own tongue and spat it at his captor.

Zeno spent his life exasperating others. Prior to his demise, he had a reputation for creating baffling puzzles. He conjured up a series of apparently contradictory situations known as Zeno's Paradoxes, which have inspired centuries of debate among philosophers and mathematicians. Now the ideas are helping researchers tackle a far more dangerous problem.

Never-ending race

The most famous of Zeno's riddles is "Achilles and the tortoise". Trojan war hero Achilles lines up for a long-distance race against a tortoise (who presumably is still gloating after beating Aesop's hare). In the interests of fairness, Achilles gives the tortoise a head start – let's say of one mile. When the race starts, Achilles soon reaches the tortoise's starting position. However, in the time it takes him to arrive at this point, the tortoise has lumbered forward, perhaps by one tenth of a mile. Achilles quickly covers this ground, but the tortoise has again moved on.

Zeno argued that because the tortoise is always ahead by the time Achilles arrives at its previous position, the hero will never catch up. While the total distance Achilles has to run decreases each time, there are an infinite number of gaps to cover:

1 + 1/10 + 1/100 + 1/1000 + …

And according to Zeno, "It is impossible to traverse an of things in a finite time."

It wasn't until the 19th Century that mathematicians proved Zeno wrong. As the distance between Achilles and the tortoise gets smaller and smaller, Achilles makes up ground faster and faster. In fact, the distance eventually becomes infinitesimally small – so small that Achilles runs it instantly. As a result, he catches up with the tortoise, and overtakes him.

At what point does Achilles reach the tortoise? Thanks to the work of 19th Century mathematicians such as Karl Weierstrass, there is a neat rule for this. For any number n between 0 and 1,

1 + n + n2 + n3 + … = 1/(n-1)

In Zeno's problem n=1/10, which means that Achilles will catch the tortoise after 1.11 miles or so.

This result might seem like no more than a historical curiosity – a clever solution to an ancient puzzle. But the idea is still very much relevant today. Rather than using it to study a race between a runner and a reptile, mathematicians are now putting it to work in the fight against diseases.

Since Middle East respiratory syndrome (MERS) was first reported in September 2012, over 400 cases have appeared around the globe. Some outbreaks consist of a single person, infected by an external, but often unknown, source. On other occasions there is a cluster of infected people who had contact with each other.

One way to measure disease transmission is with the reproduction number, denoted R. This is the average number of secondary cases generated by a typical infectious person. If R is greater than one, each infectious person will produce at least one secondary case, and the infection could cause a major epidemic. If R is less than one, the outbreak will eventually fade away.

Even if the infection has so far failed to cause an epidemic, it is still important to know what the reproduction number is. The closer the virus is to that crucial threshold of one, the smaller the hurdle it needs to overcome to spread efficiently.

Using the reproduction number, we can estimate what might happen when a new infection enters a human population. On average, the initial case will generate R secondary cases. These R infections will then generate R more, which means R2 new cases, and so on.

If R is less than one, this will create a pattern just like Achilles and the . So if we know what the reproduction number is, we can use the same formula to work out how large an outbreak will be on average:

Average size of an outbreak = 1 + R + R2 + R3 + … = 1/(1-R)

The problem is that we don't know the reproduction number for MERS. Fortunately, we do know how many cases have been reported in each outbreak. Which means to estimate the reproduction number (assuming that it is below 1), we just have to flip the equation around:

R = 1 - 1/(average size)

In the first year of reported MERS cases, disease clusters ranged from a single case to a group of more than 20 people, with an average outbreak size of 2.7 cases. According to the above back-of-the-envelope calculation, the reproduction number could therefore have been around 0.6.

In contrast, there were only two reported clusters of cases in Shanghai during the outbreaks of avian influenza H7N9 in spring 2013. The average outbreak size was therefore 1.1 cases, which gives an estimated reproduction number of 0.1 – much smaller than that for MERS.

Although techniques like these only provide very rough estimates, they give researchers a way to assess disease risk without detailed datasets. Such methods are especially valuable during an outbreak. From avian influenza to MERS, information is at a premium when faced with infections that, much like Zeno, do not give up their secrets easily.

Explore further: Saudi MERS death toll rises to 66

Related Stories

Saudi MERS death toll rises to 66

April 7, 2014
Saudi health authorities have reported the deaths of another two men from the MERS coronavirus, bringing the death toll from the respiratory disease in the worst hit country to 66.

Live virus implicates camels in MERS outbreak

April 29, 2014
There is new, more definitive evidence implicating camels in the ongoing outbreak of Middle East Respiratory Syndrome, or MERS. Scientists at the Center for Infection and Immunity at Columbia University's Mailman School of ...

Saudi MERS death toll now 87

April 25, 2014
Saudi Arabia announced Friday two more deaths from the MERS coronavirus, taking the country's toll to 87, a day after King Abdullah tried to reassure a worried public.

Two new MERS deaths bring Saudi toll to 107

April 30, 2014
Saudi health authorities announced Wednesday two new deaths from the MERS coronavirus in the kingdom, where 16 more infections were also detected.

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.