Understanding aspirin's effect on wound healing offers hope for treating chronic wounds

May 12, 2014
Three days after injury, wounds are healing faster in diabetic mice treated with a synthetic form of BLT2 (bottom) compared with untreated mice (top). Arrows mark the length of the wounds, and arrowheads indicate the progress of epithelial restoration. Credit: Liu et al., 2014

In addition to its known capacity to promote bleeding events, aspirin also inhibits wound healing. New research published in The Journal of Experimental Medicine now describes how aspirin acts on key skin cells called keratinocytes, delaying skin repair at wound sites. A better understanding of this process offers hope for the development of drugs to encourage wounds to heal.

The public health impact of chronic wounds is significant, affecting 6.5 million people in the US alone. Chronic wounds, a common complication of diabetes, are an increasing healthcare burden due to the rising incidence rates for obesity and diabetes. Wound healing is a complex process that is dependent on the restoration of the epithelial layer, the outermost layer of the skin, over the wound surface. Skin cells called keratinocytes play an important role in this process; when keratinocyte migration across the wound is defective, wounds such as diabetic ulcers cannot heal and become chronic wounds. However, we do not fully understand how keratinocyte movement during wound healing is regulated.

Researchers from Japan were prompted to investigate the role of a molecule called 12-HHT and its receptor BLT2 in wound healing; 12-HHT is produced during blood coagulation following skin injury and BLT2 is found on the surface of keratinocytes. The researchers showed that 12-HHT promotes the re-formation of the epithelial layer at wound sites by enhancing the migration of . They discovered that high dose aspirin, the most commonly used nonsteroidal anti-inflammatory drug, delays wound healing by reducing the production of 12-HHT. The researchers also found that a synthetic mimic of BLT2 accelerated wound healing in diabetic mice (a model that is commonly used to investigate delayed wound healing).

"This study describes a novel mechanism for aspirin's effect in delaying wound healing and suggests that aspirin should be used with caution in patients with chronic wounds," says lead author Takehiko Yokomizo.

Further work will be required to establish whether optimal treatment for wound healing might require a combination of approaches, such as BLT2 agonists together with growth factors to promote the number of cells at the wound site, but this study offers hope that it may be possible to develop drugs that promote the healing of in humans.

Explore further: Scarless wound healing—applying lessons learned from fetal stem cells

More information: Liu, M., et al. 2014. J. Exp. Med. DOI: 10.1084/jem.20132063

Related Stories

Scarless wound healing—applying lessons learned from fetal stem cells

April 10, 2014
In early fetal development, skin wounds undergo regeneration and healing without scar formation. This mechanism of wound healing later disappears, but by studying the fetal stem cells capable of this scarless wound healing, ...

Promising role for interleukin-10 in scarless wound healing

May 8, 2014
The powerful anti-inflammatory compound interleukin-10 (IL-10) plays a crucial role in regenerative, scarless healing of fetal skin. Studies of IL-10 in postnatal skin wounds have demonstrated its promise as an anti-scarring ...

Bacteria on the skin: New insights on our invisible companions

April 29, 2014
(Medical Xpress)—A University of Manchester study examines how skin-dwelling bacteria influence wound healing - findings could help address chronic wounds, a common ailment in the elderly.

Breakthrough research discovery to help heal chronic wounds

December 14, 2012
(Medical Xpress)—The University of Queensland researchers have successfully restored wound healing in a model of diabetes paving the way for new treatments for chronic wounds.

New finding may help accelerate diabetic wound healing

October 30, 2013
University of Notre Dame researchers have, for the first time, identified the enzymes that are detrimental to diabetic wound healing and those that are beneficial to repair the wound.

Too much of a good thing? Too many 'healing' cells delays wound healing

July 1, 2013
Like most other things, you can have too much of a good thing when it comes to wound healing, and new research proves it. According to an article published in the July 2013 issue of the Journal of Leukocyte Biology, wound ...

Recommended for you

Study finds walnuts may promote health by changing gut bacteria

July 28, 2017
Research led by Lauri Byerley, PhD, RD, Research Associate Professor of Physiology at LSU Health New Orleans School of Medicine, has found that walnuts in the diet change the makeup of bacteria in the gut, which suggests ...

Green tea ingredient may ameliorate memory impairment, brain insulin resistance, and obesity

July 28, 2017
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose ...

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.