High-frequency nerve signals let mice remember how to make the right move

May 30, 2014
Figure 1: In mice navigating a simple maze, a synchronous oscillation of high-frequency gamma waves occurs in two specific parts of the brain just before a correct navigation choice is made. Credit: tiripero/iStock/Thinkstock

Information processing in the brain is complex and involves both the processing of sensory inputs and the conversion of those inputs into behavior. The passing of electrical oscillations between networks of neurons in different parts of the brain is thought to be a critical component of cognition as well as conscious perception and awareness, but so far there has been little direct evidence linking specific neuronal oscillations to discrete thinking and behavior events.

Jun Yamamoto and colleagues from the RIKEN–MIT Center for Neural Circuit Genetics have now detected a brief burst of nerve activity oscillating in two specific parts of the mouse brain just before a correct choice is made, either when planning an action or when correcting a mistake.

The researchers searched for evidence of specific neuronal oscillations by studying mice navigating a T-shaped maze with a reward at the end of one arm of the T. Just before trained mice made the correct choice of direction, Yamamoto and his colleagues observed a brief burst of synchronized high-frequency oscillating in specific parts of the entorhinal cortex and hippocampus.

Yamamoto was fascinated to notice that the burst of gamma waves also occurred just before mice that had originally turned in the wrong direction realized their mistake and turned round. He called this the "oops" moment, and the results indicate that similar neuronal activity occurs when making a correct choice either immediately or on realization of an error. No such gamma-wave activity was detected when mice made the wrong choice without correcting it.

To further test the link between the gamma synchrony and the memory recall process, the researchers genetically engineered mice with light-activated ion channels that could block the gamma waves. When these channels were activated, the gamma waves ceased and the could no longer accurately choose the right direction or correct their wrong choices.

"Our work is telling us about how the brain recalls remembered information at critical moments," says Yamamoto. "It suggests that synchronized gamma oscillations actually contribute to the animal's correct choice rather than being a consequence of their choice." The finding sheds light on the fundamental mechanism underlying the successful retrieval of working memory. Yamamoto now intends to see if these initial findings apply to other brain regions.

The results also provide new insight into the phenomenon of animal consciousness. "Our findings provide evidence that animals employ a behavior monitoring process called metacognition that typically requires conscious awareness," says Yamamoto.

Explore further: Oops! Researchers find neural signature for mistake correction

More information: Yamamoto, J., Suh, J., Takeuchi, D. & Tonegawa, S. "Successful execution of working memory linked to synchronized high-frequency gamma oscillations." Cell 157, 845–857 (2014). DOI: 10.1016/j.cell.2014.04.009

Related Stories

Oops! Researchers find neural signature for mistake correction

April 24, 2014
Culminating an 8 year search, scientists at the RIKEN-MIT Center for Neural Circuit Genetics captured an elusive brain signal underlying memory transfer and, in doing so, pinpointed the first neural circuit for "oops" ? the ...

Neurons in the brain tune into different frequencies for different spatial memory tasks

April 17, 2014
Your brain transmits information about your current location and memories of past locations over the same neural pathways using different frequencies of a rhythmic electrical activity called gamma waves, report neuroscientists ...

Brain's motor cortex uses multiple frequency bands to coordinate movement

February 21, 2014
Synchrony is critical for the proper functioning of the brain. Synchronous firing of neurons within regions of the brain and synchrony between brain waves in different regions facilitate information processing, yet researchers ...

Why your nose can be a pathfinder

April 16, 2014
Waves in your brain make smells stick to your memories and inner maps.

Brain waves encode information as time signals

December 16, 2013
How information is processed and encoded in the brain is a central question in neuroscience, as it is essential for high cognitive function such as learning and memory. Theta-gamma oscillations are "brain waves" observed ...

Fluctuations in size of brain waves contribute to information processing

February 8, 2013
Cyclical variations in the size of brain wave rhythms may participate in the encoding of information by the brain, according to a new study led by Colin Molter of the Neuroinformatics Japan Center, RIKEN Brain Science Institute.

Recommended for you

Researchers discover fundamental pathology behind ALS

August 16, 2017
A team led by scientists at St. Jude Children's Research Hospital and Mayo Clinic has identified a basic biological mechanism that kills neurons in amyotrophic lateral sclerosis (ALS) and in a related genetic disorder, frontotemporal ...

Scientists use magnetic fields to remotely stimulate brain—and control body movements

August 16, 2017
Scientists have used magnetism to activate tiny groups of cells in the brain, inducing bodily movements that include running, rotating and losing control of the extremities—an achievement that could lead to advances in ...

The nerve-guiding 'labels' that may one day help re-establish broken nervous connections

August 16, 2017
Scientists have identified a large group of biological 'labels' that guide nerves to ensure they make the correct connections and control different parts of the body. Although their research was conducted with fruit flies, ...

Scientists give star treatment to lesser-known cells crucial for brain development

August 16, 2017
After decades of relative neglect, star-shaped brain cells called astrocytes are finally getting their due. To gather insight into a critical aspect of brain development, a team of scientists examined the maturation of astrocytes ...

Navigation and spatial memory—new brain region identified to be involved

August 16, 2017
Navigation in mammals including humans and rodents depends on specialized neural networks that encode the animal's location and trajectory in the environment, serving essentially as a GPS, findings that led to the 2014 Nobel ...

Prematurity leaves distinctive molecular signature in infants' cerebellum

August 15, 2017
Premature birth, which affects one in 10 U.S. babies, is associated with altered metabolite profiles in the infants' cerebellum, the part of the brain that controls coordination and balance, a team led by Children's National ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.