New research shows memory is a dynamic and interactive process

May 28, 2014

Research presented by Morris Moscovitch, from the Rotman Research Institute at the University of Toronto, shows that memory is more dynamic and changeable than previously thought. Dr. Moscovich's results reveal that important interactions between the hippocampus and the neocortex, two regions of the brain, have different yet complementary roles in remembering places and events. These results highlight that different forms of memories exist in the brain, and that these are encoded in different, but interacting parts of the brain. Dr. Moscovitch proposes a novel theory to explain these interactions, that furthers our understanding of what we remember, and could be useful for treatment and management of people with memory disorders.

These results were presented at the 8th Annual Meeting of the Canadian Association for Neuroscience held in Montreal, Canada May 25 to 28th 2014.

By studying how humans remember events and places in the short and long term, and how rodents remember and navigate through familiar and unfamiliar environment, Dr. Moscovitch and others have revealed differences between what they call "", which is a form of memory rich in contextual details, dependent on a brain region called the , and another form of memory, called "" which relies primarily on neocortex, and which is a more general memory, recording the gist of the initial episodic memory.

Studies in animals and humans have shown that the hippocampus, a brain region located deep inside the brain, has a central role in recent and remote episodic memory. Patients with hippocampal loss, including the famous Henry Molaison (patient HM) and Kent Cochrane (patient KC), were shown to be unable to make new memories, but they retained the ability to recall earlier events, in a schematic, general fashion. Dr. Moscovitch, investigating how rich, recent memories are often converted to more schematic, remote memories has elaborated a theory he has termed "multiple trace/transformation theory".

According to multiple trace/transformation theory, each time an episodic memory is retrieved, it is automatically re-encoded by the hippocampus along with the new context in which retrieval occurs. Over time, and with every retrieval, multiple memory traces accumulate; the neocortex extracts similarities from these traces to form a generalized memory, the semantic memory. By this process, the memory is transformed over time, from a mostly hippocampus dependent, context-rich memory, to a more general memory, a recording of the essential elements of the memory, that captures the gist of the initial episodic memory.

Dr. Moscovitch presented results that show that the same processes apply to memory about places and the environment. Initially dependent on the hippocampus, they also are transformed, and become schematic memories that can be retrieved without the involvement of the hippocampus. As it was previously thought that the hippocampus was always involved in remembering places, this discovery sheds new light on the different forms of memory that exist.

"Spatial representations provide the framework in which events unfold, so that they interact with each other to form rich episodic memories that have both spatial and event elements" says Dr. Moscovitch. "Memory for events is facilitated if they occur in familiar rather than unfamiliar places. These findings could be used to help ameliorate problems in older adults, and in people with dementia, who have to leave their home and move into new living quarters."

Explore further: Neurons in the brain tune into different frequencies for different spatial memory tasks

More information: www.can-acn.org/meeting2014

Related Stories

Neurons in the brain tune into different frequencies for different spatial memory tasks

April 17, 2014
Your brain transmits information about your current location and memories of past locations over the same neural pathways using different frequencies of a rhythmic electrical activity called gamma waves, report neuroscientists ...

Why bigger is better when it comes to our brain and memory

December 21, 2011
The hippocampus is an important brain structure for recollection memory, the type of memory we use for detailed reliving of past events. Now, new research published by Cell Press in the December 22 issue of the journal Neuron ...

What happened when? How the brain stores memories by time

March 12, 2014
(Medical Xpress)—Before I left the house this morning, I let the cat out and started the dishwasher. Or was that yesterday? Very often, our memories must distinguish not just what happened and where, but when an event occurred—and ...

Outside the body our memories fail us

March 10, 2014
New research from Karolinska Institutet and Umeå University demonstrates for the first time that there is a close relationship between body perception and the ability to remember. For us to be able to store new memories ...

Brain activity may mark the beginning of memories

April 14, 2014
By tracking brain activity when an animal stops to look around its environment, neuroscientists at the Johns Hopkins University believe they can mark the birth of a memory.

When you can recite a poem but not remember who asked you to learn it a few days earlier

August 11, 2011
Memory is not a single process but is made up of several sub-processes relying on different areas of the brain. Episodic memory, the ability to remember specific events such as what you did yesterday, is known to be vulnerable ...

Recommended for you

Scientists discover common obesity and diabetes drug reduces rise in brain pressure

August 23, 2017
Research led by the University of Birmingham, published today in Science Translational Medicine, has discovered that a drug commonly used to treat patients with either obesity or Type II diabetes could be used as a novel ...

Use of brain-computer interface, virtual avatar could help people with gait disabilities

August 23, 2017
Researchers from the University of Houston have shown for the first time that the use of a brain-computer interface augmented with a virtual walking avatar can control gait, suggesting the protocol may help patients recover ...

Researcher working to develop new tool for non-invasive neuromodulation of human brain

August 23, 2017
A UTA researcher is developing a technology that will map and image the effects of infrared light shone on the human brain that may be able to modulate and improve brain waves and circuits at certain spots in the brain.

Physicist reports binary marker of preclinical and clinical Alzheimer's disease

August 23, 2017
A new technique shows high potential for providing a discrete, non-invasive biomarker of Alzheimer's disease (AD) at the individual level during both preclinical and clinical stages. The proposed biomarker has a large effect ...

Firing of neurons changes the cells that insulate them

August 22, 2017
Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology ...

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

russell_russell
not rated yet May 29, 2014
http://medicalxpr...ain.html
The foundation of all memory and learning.

Any retrievable memory with an act of recall invokes further damage to the area where any memory is stored.

"...it is automatically re-encoded by the hippocampus along with the new context in which retrieval occurs."

No. Retrieval invokes more damage and repair to the storage cells not preciously affected and morphing the memory. Retrieval rate strengthens existing pathways and creates new pathways to the cells call upon to express the stored gene expressions of the event stored. The hippocampus is transmitter and receiver. A transmitter and receiver need to be sourced from a preexisting storage of memory or information.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.