Quantity, not quality: Risk of sudden cardiac death tied to protein overproduction

May 27, 2014

A genetic variant linked to sudden cardiac death leads to protein overproduction in heart cells, Johns Hopkins scientists report. Unlike many known disease-linked variants, this one lies not in a gene but in so-called noncoding DNA, a growing focus of disease research. The discovery, reported in the June 5 issue of The American Journal of Human Genetics, also adds to scientific understanding of the causes of sudden cardiac death and of possible ways to prevent it, the researchers say.

"Traditionally, geneticists have studied gene variants that cause disease by producing an abnormal protein," says Aravinda Chakravarti, Ph.D., a professor of medicine, pediatrics, molecular biology and genetics, and biostatistics in the McKusick-Nathans Institute of Genetic Medicine at the Johns Hopkins University School of Medicine. "We think there will turn out to be many DNA variants that, like this one, cause disease by making too much or too little of a normal protein."

Chakravarti's interest in emerged a decade ago, when it claimed several of his colleagues within a few months. An expert in complex common diseases, he and his team knew that sudden cardiac death can be caused by many conditions. They focused on one: abnormalities in what is known as cardiac repolarization—the time it takes for the heart to gear up to beat again.

The team compared the genetic sequences of tens of thousands of people with their electrocardiogram (ECG) results, identifying several regions on the genome with genetic variations associated with lengthened QT interval, a measure of cardiac repolarization, in the ECG. "The problem is that most of these variants lie outside of genes, in the noncoding DNA that controls how genes are used," Chakravarti says, "so it's hard to tell what genes they're affecting."

Despite the challenge, Chakravarti and his colleagues were able to home in on one suspect region of the genome housing a gene called NOS1AP. "There were many variants grouped in this area," says Ashish Kapoor, Ph.D., a postdoctoral researcher in Chakravarti's laboratory, "so we catalogued all 200 that we found." The team then went through a process of elimination using genetically engineered, lab-grown cells and zebra fish to identify a variant in the noncoding DNA that affected how much protein was made by the nearby NOS1AP gene.

Next, they cultured rat and engineered them to overproduce NOS1AP. When the concentration of the protein rose in a particular type of heart cell called a cardiomyocyte, the cells' electrical properties changed in a way that is similar to the pattern seen in long QT syndrome.

Kapoor notes that 67 percent of the general population carries the NOS1AP-overproducing genetic variant. "We have observed that NOS1AP genetic variants are associated with sudden cardiac death whether or not they affect a particular person's QT interval, raising the risk by about 40 percent," he says. Chakravarti notes that the results also add to scientific understanding of how the heart and QT interval work—knowledge with far-reaching implications. For example, many drugs developed for noncardiac conditions have turned out to temporarily lengthen QT interval, a side effect that only turns up after much time and money are spent on drug development. By better understanding regulation of the QT interval, researchers would be better able to predict what types of drugs could affect it.

"Hundreds of genome-wide association studies have been done to find genetic variants associated with disease, but this is one of just a handful of follow-up studies to look for the mechanism behind such a variant," Chakravarti says. "I think we've shown there's great value in asking why."

Explore further: Genome-wide association studies mislead on cardiac arrhythmia risk gene

More information: Paper: http://www.cell.com/ajhg/abstract/S0002-9297%2814%2900221-3

Related Stories

Genome-wide association studies mislead on cardiac arrhythmia risk gene

March 20, 2014
Although genome-wide association studies have linked DNA variants in the gene SCN10A with increased risk for cardiac arrhythmia, efforts to determine the gene's direct influence on the heart's electrical activity have been ...

Severe forms of congenital heart disease caused by variants of the NR2F2 gene

April 8, 2014
(Medical Xpress)—Researchers have explored the role of a master gene that controls the functioning of other genes involved in heart development. Variations in this gene - NR2F2 - are responsible for the development of severe ...

Recommended for you

Exploring disease predisposition to deliver personalized medicine

October 23, 2017
Geneticists from the University of Geneva have taken an important step towards true predictive medicine. Exploring the links between diseases and tissue-specific gene activity, they have been able to build a model that constitutes ...

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers find evidence of DNA damage in veterans with Gulf War illness

October 19, 2017
Researchers say they have found the "first direct biological evidence" of damage in veterans with Gulf War illness to DNA within cellular structures that produce energy in the body.

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
1 / 5 (1) May 28, 2014
"Hundreds of genome-wide association studies have been done to find genetic variants associated with disease, but this is one of just a handful of follow-up studies to look for the mechanism behind such a variant," Chakravarti says. "I think we've shown there's great value in asking why."

There may be greater value in asking why others have not learned about biologically based cause and effect, which enables nutrient-dependent and pheromone-controlled cell type differentiation in all cell types of all organisms via conserved molecular mechanisms.

Nutrients change the microRNA/messenger RNA balance, which is how they alter cell type differentiation and sometimes cause diseases associated with poor nutrition.

http://news360.co...40380784
"With the recent discovery that non-coding microRNA's in food are capable of directly altering gene expression within human physiology,[1] this new study further concretizes..." facts that are consistent with cutting edge molecular biology.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.