SapC-DOPS technology may help with imaging brain tumors, research shows

May 14, 2014

Just because you can't see something doesn't mean it's not there. Brain tumors are an extremely serious example of this and are not only difficult to treat—both adult and pediatric patients have a five-year survival rate of only 30 percent—but also have even been difficult to image, which could provide important information for deciding next steps in the treatment process.

However, Cincinnati Cancer Center and University of Cincinnati Cancer Institute research studies published in an April online issue of the Journal of Magnetic Resonance Imaging and a May issue of the Journal of Visualized Experiments (JoVE), an online peer-reviewed scientific journal that publishes experimental methods in video format, reveal possibly new ways to image glioblastoma multiforme tumors—a form of brain tumor—using the SapC-DOPS technology.

A lysosomal protein saposin C (SapC), and a phospholipid, known as dioleoylphosphatidylserine (DOPS), can be combined and assembled into tiny cavities, or nanovesicles, to target and kill many forms of cells.

Lysosomes are membrane-enclosed organelles that contain enzymes capable of breaking down all types of biological components; phospholipids are major components of all cell membranes and form lipid bilayers—or cell membranes.

Xiaoyang Qi, PhD, member of the CCC, associate professor in the division of hematology oncology at the University of Cincinnati, a member of the UC Cancer and Neuroscience Institutes and the Brain Tumor Center, says his lab and collaborators have previously found that the combination of two natural cellular components, called SapC-DOPS, caused cell death in cancer cell types, including brain, lung, skin, prostate, blood and breast cancer, while sparing normal cells and tissues.

"We used this knowledge to gain assistance from our collaborators Kati LaSance, Vontz Core Imaging Lab (VCIL) director, and Patrick Winter, PhD, in the Imaging Research Center (IRC) at Cincinnati Children's Hospital Medical Center. We used SapC-DOPS as a transport vesicle to deliver bio-fluorescence agents and gadolinium-labeled contrast agents directly to which provided visualization using optical imaging and MRI," Qi says.

"There are two things lacking when it comes to brain tumors: getting a good picture of them and treating them effectively," says LaSance. "With this discovery, there are possibilities to improve both. With good visualization of the tumor, physicians might one day be able to better determine which form of treatment—chemotherapy, radiation or surgery—would be best for a patient and can image a tumor at its smallest stages with hopes of intervening much earlier."

Qi says this is preclinical research, as the studies were done using animal models that were injected with the SapC-DOPS vesicle assembled with illuminating agents, but is translational in nature and could be tested soon in human populations.

"While optical imaging is not applicable to a patient population, both MRI and PET imaging are," he says. "The bio-fluorescent molecule used in the JoVE study can be substituted for a PET molecule and fortunately, PET imaging is widely used by doctors and hospitals in current cancer patients.

"This research has the potential to make a large impact in treatment of brain tumors, and most importantly, it would not have been impossible without support and collaboration from the VCIL and the IRC."

Explore further: Researchers discover biomarker, potential targeted therapy for pancreatic cancer

Related Stories

Researchers discover biomarker, potential targeted therapy for pancreatic cancer

October 4, 2013
University of Cincinnati (UC) researchers have discovered a biomarker, known as phosphatidylserine (PS), for pancreatic cancer that could be effectively targeted, creating a potential therapy for a condition that has a small ...

Nano drug crosses blood-brain tumor barrier, targets brain tumor cells and blood vessels

July 17, 2013
(Phys.org) —An experimental drug in early development for aggressive brain tumors can cross the blood-brain tumor barrier and kill tumor cells and block the growth of tumor blood vessels, according to a recent study led ...

MRI-guided biopsy for brain cancer improves diagnosis

May 1, 2014
Neurosurgeons at UC San Diego Heath System have, for the first time, combined real-time magnetic resonance imaging (MRI) technology with novel non-invasive cellular mapping techniques to develop a new biopsy approach that ...

Molecular imaging improves care for children with brain cancer

June 11, 2013
A relatively new weapon in the fight against childhood brain cancer has emerged that improves upon standard magnetic resonance imaging (MRI) by providing information about tumor metabolism and extent of cancer in children ...

Improved ultrasound imaging provides alternate way to visualize tumors

January 29, 2014
While ultrasound provides a less expensive and radiation-free alternative to detecting and monitoring cancer compared to technologies such as X-rays, CT scans, and MRIs, ultrasound has seen limited use in cancer treatment ...

Researchers identify potential therapeutic target for deadly brain cancer

April 8, 2014
Researchers from the Geisel School of Medicine at Dartmouth will present a scientific poster on Tuesday, April 8, 2014 at the American Association of Cancer Researchers conference in San Diego, CA. The research identifies ...

Recommended for you

Clear link between heavy vitamin B intake and lung cancer

August 22, 2017
New research suggests long-term, high-dose supplementation with vitamins B6 and B12—long touted by the vitamin industry for increasing energy and improving metabolism—is associated with a two- to four-fold increased lung ...

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.