Researchers discover biomarker, potential targeted therapy for pancreatic cancer

October 4, 2013
This is Xiaoyang Qi, Ph.D., associate professor of hematology oncology at the University of Cincinnati. Credit: University of Cincinnati

University of Cincinnati (UC) researchers have discovered a biomarker, known as phosphatidylserine (PS), for pancreatic cancer that could be effectively targeted, creating a potential therapy for a condition that has a small survival rate.

These findings, being published in the Oct. 4, 2013, online edition of PLOS ONE, also show that the use of a biotherapy consisting of a lysosomal protein, known as saposin C (SapC), and a phospholipid, known as dioleoylphosphatidylserine (DOPS), can be combined into tiny cavities, or nanovesicles, to target and kill .

Lysosomes are membrane-enclosed organelles that contain enzymes capable of breaking down all types of biological components; phospholipids are a major components of all cell membranes and form lipid bilayers—or cell membranes.

"Only a small number of promising drugs target pancreatic cancer, which is the fourth-leading cause of cancer deaths, with a five-year survival of less than 5 percent," says Xiaoyang Qi, PhD, associate professor of hematology oncology at UC and lead researcher on the study.

"Pancreatic cancer is usually asymptomatic in the early stages, while frequently invading lymph nodes and the liver, and less often the lungs and visceral organs. Current treatments, including surgery, chemotherapy and radiation therapy, have failed to improve long-term survival."

Qi says his lab and collaborators previously found that the combination of two natural cellular components, called SapC-DOPS, which were assembled and delivered using cancer-selective nanovesicles, caused cell death in other cancer cell types, including brain, lung, skin, prostate, blood and breast cancer, while sparing normal cells and tissues.

"We also investigated the efficacy and systemic biodistribution of SapC-DOPS nanovesicles in animal models and found that it targeted and halted growth of certain and showed no toxic effects in non-tumor tissues. In this study, we selectively targeted the of pancreatic tumors to see if we could destroy malignant pancreatic cells without harming normal tissues and cells."

Qi says a distinguishing feature of SapC-DOPS is its ability to bind to phosphatidylseriine (PS), a lipid, which is found on the membrane surfaces of pancreatic .

"To evaluate the role of external cell PS, we used PS exposure in human tumor and non-tumor cells via culture," he says. "We also introduced these cells into animal models and then injected the SapC-DOPS vesicles to see if changes were observed. "

In some portions of the experiment, the SapC-DOPS nanovesicles were fluorescently labeled with a dye which could be followed using an imaging device.

To track tumor cells, human pancreatic tumor cells were illuminated with dye as well, and the same imaging device was used to identify and monitor them.

"We observed that the nanovesicles selectively killed human pancreatic cancer cells, and the noncancerous, or untransformed cells, remained unaffected," he says. "This toxic effect correlated to the surface exposure level of PS on the tumor cells."

Qi adds that animals treated with SapC-DOPS showed clear survival benefits and their tumors shrank or disappeared.

"Furthermore, using a double-tracking method in live models, we showed that the nanovesicles were specifically targeted to the tumors," he says. "These data suggest that the acidic phospholipid PS is a biomarker for pancreatic cancer that can be effectively targeted for therapy using cancer-selective SapC-DOPS nanovesicles.

"This study provides convincing evidence in support of developing a new therapeutic approach to pancreatic cancer. This technology is now being licensed and will hopefully be available in clinical trials soon."

"Dr. Qi 's discovery has great potential to be developed into diagnostics and therapies for pancreatic cancer," says Shuk-mei Ho, PhD, director of the Cincinnati Cancer Center and Jacob G. Schmidlapp Professor and Chair of Environmental Health. "This type of research helps fulfill the mission of the National Cancer Institute to promote translation of research from the bench to the bedside."

Explore further: Nano drug crosses blood-brain tumor barrier, targets brain tumor cells and blood vessels

Related Stories

Nano drug crosses blood-brain tumor barrier, targets brain tumor cells and blood vessels

July 17, 2013
(Phys.org) —An experimental drug in early development for aggressive brain tumors can cross the blood-brain tumor barrier and kill tumor cells and block the growth of tumor blood vessels, according to a recent study led ...

Scientists find potential loophole in pancreatic cancer defenses

March 27, 2013
Dana-Farber Cancer Institute scientists and colleagues have discovered that pancreatic cancer cells' growth and spread are fueled by an unusual metabolic pathway that someday might be blocked with targeted drugs to control ...

Blood-pressure drug may help improve cancer treatment

October 1, 2013
Use of existing, well-established hypertension drugs could improve the outcome of cancer chemotherapy by opening up collapsed blood vessels in solid tumors. In their report in the online journal Nature Communications, Massachusetts ...

Targeting pancreatic cancer drug resistance

July 8, 2013
Pancreatic cancer is one of the most deadly and intractable forms of cancer, with a 5-year survival rate of only 6%. Novel therapies are urgently needed, as conventional and targeted approaches have not been successful and ...

Researcher examines mechanism underlying abdominal pain in pancreatic cancer

March 1, 2013
Erxi Wu, assistant professor of pharmaceutical sciences, co-wrote the article, "Neurotransmitter substance P mediates pancreatic cancer perineural invasion via NK-1R in cancer cells," which was published by Molecular Cancer ...

Leukemia inhibitory factor may be a promising target against pancreatic cancer

June 19, 2012
Pancreatic cancer is one of the deadliest forms of cancer, defying most treatments. Its ability to evade therapy may be attributable to the presence of cancer stem cells, a subset of cancer cells present in pancreatic tumors ...

Recommended for you

Clear link between heavy vitamin B intake and lung cancer

August 22, 2017
New research suggests long-term, high-dose supplementation with vitamins B6 and B12—long touted by the vitamin industry for increasing energy and improving metabolism—is associated with a two- to four-fold increased lung ...

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.