New research on stroke aims to help recovery

June 20, 2014

Stroke is the leading cause of adult disability worldwide but new funding of $1.2 million for research at the University of Auckland aims to better help people recover normal movement after stroke.

Sport and Exercise Science Professor Winston Byblow and his team are investigating how affects "inhibitory tone" in the brain, which can lead to difficulties in producing movement. The study seeks to extend the group's world-leading discovery as to why some individuals make a good after stroke while others do not.

"This funding will help us identify new factors in the initial days and weeks following a stroke that may dictate a good versus poor recovery weeks and months later," Professor Byblow says.

The team, including Professor Alan Barber and Associate Professor Cathy Stinear from the University of Auckland Centre for Brain Research, will use magetic resonance spectroscopy to identify a "chemical signature" for each patient early after stroke. That signature will identify whether the stroke has created a barrier to plasticity, and be used to identify patients who need an additional boost to reach their full potential for recovery.

"This will allow us to individualise non-invasive , and should boost the brain's natural plastic response which is necessary for recovery," says Professor Byblow.

The direct current stimulation involves passing very weak current through the using a device powered by a 9V battery.

"The technique is known to be safe if administered in controlled environments. The difficulty with current methods of direct current stimulation for has been the variability in response from one patient to the next."

In a study published last year in the international journal Cerebral Cortex, Professor Byblow's group was the first to identify factors which predict the variation.

"We were pretty excited to 'crack the code' and discover why some patients respond favourably while others do not. That provided us with the missing piece of the puzzle we needed for this new study."

Explore further: Predicting recovery after stroke

Related Stories

Predicting recovery after stroke

August 1, 2012
(Medical Xpress) -- In work that may revolutionise rehabilitation for stroke patients, researchers from The University of Auckland and the Auckland District Health Board have shown it is possible to predict an individual’s ...

Electrical stimulation helps stroke patients learning to use brain-controlled robot arm

March 24, 2014
Patients suffering from paralysis may soon be able to control a robot arm with the electrical activity in their brains using a brain-machine interface. Considerable training is required before a person can use the system ...

Stem cell-based transplantation approach improves recovery from stroke

June 19, 2014
Stroke is a leading cause of death and disability in developed countries, and there is an urgent need for more clinically effective treatments. A study published by Cell Press June 19th in Stem Cell Reports reveals that simultaneous ...

Stroke hospitalizations are up among middle-aged blacks in South Carolina

June 19, 2014
Stroke hospitalizations among middle-aged blacks are increasing in South Carolina—highlighting the need for intervention among younger, high-risk groups, according to new research published in the American Heart Association ...

Molecule found that inhibits recovery from stroke

July 27, 2012
(Medical Xpress) -- Researchers at UCLA have identified a novel molecule in the brain that, after stroke, blocks the formation of new connections between neurons. As a result, it limits the brain’s recovery. In a mouse ...

Early brain stimulation may help stroke survivors recover language function

June 27, 2013
Non-invasive brain stimulation may help stroke survivors recover speech and language function, according to new research in the American Heart Association journal Stroke.

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.