Stem cell-based transplantation approach improves recovery from stroke

June 19, 2014

Stroke is a leading cause of death and disability in developed countries, and there is an urgent need for more clinically effective treatments. A study published by Cell Press June 19th in Stem Cell Reports reveals that simultaneous transplantation of neural and vascular progenitor cells can reduce stroke-related brain damage and improve behavioral recovery in rodents. The stem cell-based approach could represent a promising strategy for the treatment of stroke in humans.

"Our findings suggest that early cotransplantation treatment can not only replace lost , but also prevent further deterioration of the injured brain following ischemic ," says senior study author Wei-Qiang Gao of Shanghai Jiaotong University. "With the development of human embryonic and induced pluripotent stem cell technology, we are optimistic about the potential translation of our research into clinical use."

The most common kind of stroke, known as ischemic stroke, is caused by a blood clot that blocks or plugs a blood vessel in the brain. Although a medicine called tissue plasminogen activator can break up blood clots in the brain, it must be given soon after the start of symptoms to work, and there are no other clinically effective treatments currently available for this condition. Stem cell transplantation represents a promising therapeutic strategy, but transplantation of either neural or has shown restricted therapeutic effectiveness.

In the new study, Gao teamed up with colleagues at Shanghai Jiao Tong University, including Jia Li, Yaohui Tang, and Guo-Yuan Yang, to test whether cotransplantation of both neural and vascular precursor cells would lead to better outcomes. They induced ischemic stroke in rats and then simultaneously injected neural and vascular progenitor cells from mice into the stroke-damaged rat brains 24 hours later. The transplanted precursor cells turned into all major types of vascular and , including mature, functional neurons. The resulting vascular cells developed into microvessels, while the grafted produced molecules known to stimulate the growth of both neurons and vessels.

"This is the first study to use embryonic stem cell-derived vascular progenitor cells together with neural progenitor cells to treat ischemic stroke," Gao says. "These two types of progenitors generate nearly all types of brain cells, including , pericytes/smooth muscle cells, neurons, and astrocytes, resulting in better restoration of neurovascular units and better replacement of the lost cells in the stroke model. A previously reported cotransplantation approach published in the journal Stem Cells in 2009 (DOI: 10.1002/stem.161) was limited because it did not use vascular precursor cells capable of turning into all major types of vascular cells important for recovery. Our findings here suggest that cotransplantation of the two types of cells that restore the neurovascular unit more effectively is a better approach for the treatment of ."

Two weeks after stroke, rats that had undergone cotransplantation showed less brain damage and improved behavioral performance on motor tasks compared with rats that had been treated with alone. "Our findings suggest that cotransplantation of neural and vascular cells is much more effective than transplantation of one cell type alone because these two cell types mutually support each other to promote recovery after stroke," Gao says.

Explore further: Future heat stroke treatment found in dental pulp stem cells

More information: Stem Cell Reports, Li et al.: "Neurovascular Recovery via Co-transplanted Neural and Vascular Progenitors Leads to Improved Functional Restoration after Ischemic Stroke in Rats." www.cell.com/stem-cell-reports … 2213-6711(14)00153-2

Related Stories

Future heat stroke treatment found in dental pulp stem cells

June 5, 2014
Scientists in Taiwan have found that intravenous injections of stem cells derived from human exfoliated deciduous tooth pulp (SHED) have a protective effect against brain damage from heat stroke in mice. Their finding was ...

Migrating stem cells possible new focus for stroke treatment

May 27, 2014
Two years ago, a new type of stem cell was discovered in the brain that has the capacity to form new cells. The same research group at Lund University in Sweden has now revealed that these stem cells, which are located in ...

Unlocking the potential of stem cells to repair brain damage

June 4, 2014
(Medical Xpress)—A QUT scientist is hoping to unlock the potential of stem cells as a way of repairing neural damage to the brain.

Bone marrow stem cells show promise in stroke treatment

April 9, 2014
Stem cells culled from bone marrow may prove beneficial in stroke recovery, scientists at UC Irvine's Sue & Bill Gross Stem Cell Research Center have learned.

Important step towards stem cell-based treatment for stroke

October 25, 2013
Brain infarction or stroke is caused by a blood clot blocking a blood vessel in the brain, which leads to interruption of blood flow and shortage of oxygen. Now a reserach group at Lund University, Sweden, has taken an important ...

Study finds long-term survival of human neural stem cells transplanted into primate brain

April 23, 2014
A team of researchers in Korea who transplanted human neural stem cells (hNSCs) into the brains of nonhuman primates and assessed cell survival and differentiation after 22 and 24 months found that the hNSCs had differentiated ...

Recommended for you

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.