Important step towards stem cell-based treatment for stroke

October 25, 2013, Lund University

Brain infarction or stroke is caused by a blood clot blocking a blood vessel in the brain, which leads to interruption of blood flow and shortage of oxygen. Now a reserach group at Lund University, Sweden, has taken an important step towards a treatment for stroke using stem cells.

The research group shows in a new study, published in the scientific journal Brain, that so-called induced pluripotent have developed to mature nerve cells at two months after transplantation into the stroke-injured cerebral cortex of rats. These nerve cells have established contact with other important structures in the . The transplantation gave rise to improvement of the animals' mobility. The results are from studies in animals but the scientists are hopeful.

"The results are promising and represent a very early but important step towards a stem cell-based treatment for stroke in patients. However, it is important to underscore that further experimental studies are necessary to translate these findings into the clinic in a responsible way," says Olle Lindvall, senior consultant and professor of neurology and one of the scientists responsible for the study.

In Sweden, about 30 000 people are affected with stroke every year and many of these patients will exhibit long-lasting handicap and will never fully recover. Following a stroke, nerve cells in the brain die and if these cells could be replaced by new healthy cells, this approach might be developed into a treatment. At Lund Stem Cell Center, Zaal Kokaia's and Olle Lindvall's research group is working with the aim to develop a stem cell-based method to treat patients with stroke.

The cerebral cortex is often damaged following a , which underlies many of the symptoms such as paresis and speech problems. With the method used by the Lund scientists it should be possible to generate nerve cells for transplantation from the patient's own .

The research group has first reprogrammed skin cells from an adult human to induced pluripotent stem cells and then induced these cells to become mature nerve cells characteristic for the cerebral cortex.

"By using the method of induced we have been able to generate cells which express those markers which are typical for nerve cells in the cerebral cortex and we have also shown that the new nerve cells are functional," says Zaal Kokaia, professor of experimental medical research.

One problem which has to be solved is to find a way to produce the cerebral cortex cells in large numbers, which is necessary for application in patients.

"We must also determine which effects the transplanted nerve cells have on other brain functions. We need to know more about how well the new are integrated into the and communicate with other nerve . The magnitude of functional restoration also has to be improved," says Zaal Kokaia.

Explore further: Stem cells aid recovery from stroke

More information: Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Författare: Daniel Tornero, Somsak Wattananit, Marita Grønning Madsen, Philipp Koch, James Wood, Jemal Tatarishvili, Yutaka Mine, Ruimin Ge, Emanuela Monni, Karthikeyan Devaraju, Robert F. Hevner, Oliver Brüstle, Olle Lindvall and Zaal Kokaia, Brain, October 21, 2013. www.ncbi.nlm.nih.gov/pubmed/24148272%20%20

Related Stories

Stem cells aid recovery from stroke

January 27, 2013
Stem cells from bone marrow or fat improve recovery after stroke in rats, finds a study published in BioMed Central's open access journal Stem Cell Research & Therapy. Treatment with stem cells improved the amount of brain ...

Researchers form new nerve cells—directly in the brain

March 26, 2013
The field of cell therapy, which aims to form new cells in the body in order to cure disease, has taken another important step in the development towards new treatments. A new report from researchers at Lund University in ...

Stimulating brain cells with light

October 26, 2012
For the time being, this is basic research but the long term objective is to find new ways of treating Parkinson's disease. This increasingly common disease is caused by degeneration of the brain cells producing signal substance ...

New, 'robust' treatment for stroke uses genetic material from bone marrow

August 26, 2013
In the latest in a series of experiments testing the use of stem cells to treat neurological disease, researchers at Henry Ford Hospital have shown for the first time that microscopic material in the cells offers a "robust" ...

Scientists identify key regulator controlling formation of blood-forming stem cells

September 26, 2013
Stem cell scientists have moved one step closer to producing blood-forming stem cells in a Petri dish by identifying a key regulator controlling their formation in the early embryo, shows research published online today in ...

Recommended for you

Cognitive training helps regain a younger-working brain

January 23, 2018
Relentless cognitive decline as we age is worrisome, and it is widely thought to be an unavoidable negative aspect of normal aging. Researchers at the Center for BrainHealth at The University of Texas at Dallas, however, ...

Lifting the veil on 'valence,' brain study reveals roots of desire, dislike

January 23, 2018
The amygdala is a tiny hub of emotions where in 2016 a team led by MIT neuroscientist Kay Tye found specific populations of neurons that assign good or bad feelings, or "valence," to experience. Learning to associate pleasure ...

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.