Migrating stem cells possible new focus for stroke treatment

May 27, 2014, Lund University

Two years ago, a new type of stem cell was discovered in the brain that has the capacity to form new cells. The same research group at Lund University in Sweden has now revealed that these stem cells, which are located in the outer blood vessel wall, appear to be involved in the brain reaction following a stroke.

The findings show that the cells, known as pericytes, drop out from the blood vessel, proliferate and migrate to the damaged brain area where they are converted into microglia cells, the brain's .

Pericytes are known to contribute to tissue repair in a number of organs, and the researchers believe that their reparative properties could also apply to the brain. The study shows for the first time that pericytes are directly involved in the reaction of the brain tissue after .

"Pericytes are a fascinating cell type with many different properties and found at high density in the brain. It was surprising that a pericyte subtype is so strongly activated after a stroke. The fact that pericytes can be converted into microglia, which have an important function in the brain after a stroke, was an unexpected finding that opens up a new possibility to influence inflammation associated with a stroke", said Gesine Paul-Visse, neurologist at Lund University and senior author of the study.

Using a bound to the pericytes, the researchers were able to track the cells' path to the damaged part of the brain. The migration takes place within a week after a stroke. When the cells reach the site of damage they are converted into microglia cells, the 'cleaners' of the central nervous system. Inflammation can, however, have both positive reparative effects and negative effects on the damaged tissue. The exact role of microglia in the regeneration after a stroke is not entirely clear, but we do know that pericytes play an important role in protecting the brain against disease and injury.

"We now need to elucidate how pericytes affect the brain's recovery following a stroke. Our findings put pericytes in focus as a new target for brain repair and future research will help us understand more about the 's own defence and repair mechanisms."

There is an urgent need for new drugs that can alleviate the harmful effects of a stroke as current treatment possibilities using thrombolysis are limited to the first hours following a stroke.

"Because inflammation following a stroke is an event that continues after the acute stage, we hope that targeting in the subacute phase after stroke, i.e. within a longer time window following the onset of stroke, may influence the outcome", said Gesine Paul-Visse.

Explore further: Cell-saving drugs could reduce brain damage after stroke

Related Stories

Cell-saving drugs could reduce brain damage after stroke

March 26, 2014
Long-term brain damage caused by stroke could be reduced by saving cells called pericytes that control blood flow in capillaries, reports a new study led by scientists from University College London.

Bone marrow stem cells show promise in stroke treatment

April 9, 2014
Stem cells culled from bone marrow may prove beneficial in stroke recovery, scientists at UC Irvine's Sue & Bill Gross Stem Cell Research Center have learned.

Study IDs new cause of brain bleeding immediately after stroke

April 17, 2014
By discovering a new mechanism that allows blood to enter the brain immediately after a stroke, researchers at UC Irvine and the Salk Institute have opened the door to new therapies that may limit or prevent stroke-induced ...

New research findings on the brain's guardian cells

April 24, 2013
The central nervous system's mop-up crew, microglia, play an important role in protecting the brain against disease and injury. A research group at Lund University in Sweden has now developed a method that makes it possible ...

Blood-brain barrier repair after stroke may prevent chronic brain deficits

March 25, 2014
Following ischemic stroke, the integrity of the blood-brain barrier (BBB), which prevents harmful substances such as inflammatory molecules from entering the brain, can be impaired in cerebral areas distant from initial ischemic ...

New stem cell found in the brain

April 20, 2012
Researchers at Lund University in Sweden have discovered a new stem cell in the adult brain. These cells can proliferate and form several different cell types - most importantly, they can form new brain cells. Scientists ...

Recommended for you

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018
Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

Scientists discover how brain signals travel to drive language performance

June 21, 2018
Effective verbal communication depends on one's ability to retrieve and select the appropriate words to convey an intended meaning. For many, this process is instinctive, but for someone who has suffered a stroke or another ...

Study on instinctive behaviour elucidates a synaptic mechanism for computing escape decisions

June 21, 2018
How does your brain decide what to do in a threatening situation? A new paper published in Nature describes a mechanism by which the brain classifies the level of a threat and decides when to escape.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.