Anti-dsDNA, surface-expressed TLR4 and endosomal TLR9 cooperate to exacerbate lupus

June 12, 2014

Systemic lupus erythematosus (SLE) is a complicated multifactorial autoimmune disease influenced by many genetic and environmental factors. The hallmark of systemic lupus erythematosus (SLE) is the presence of high levels of anti-double-stranded DNA autoantibody (anti-dsDNA) in sera. In addition, greater infection rates are found in SLE patients and higher morbidity and mortality usually come from bacterial infections. Deciphering interactions between the susceptibility genes and the environmental factors for lupus complex traits is challenging and has resulted in only limited success.

In the June issue of Experimental Biology and Medicine Lee et al, from National Yang-Ming University in Taiwan, studied the role of anti-double stranded DNA (anti-dsDNA) and the Toll-like receptors (TLRs), TLR4 and TLR9, in the pathogenesis of lupus. They prepared transgenic mice carrying the anti-dsDNA transgene and challenged these mice with TLR4 and TLR9 agonists. They demonstrate that in the anti-dsDNA transgenic mice TLR4 and TLR9 are cooperatively linked to Lupus progression.

''Since simultaneous activation of extracellular and intracellular pattern-recognition receptors (PRR) is able to trigger more intense host immune responses, it is really crucial to determine whether co-engagement of extracellular and intracellular PRRs may increase disease severity in lupus,'' said Dr. Kuang-Hui Sun, corresponding author. However, only individual conditional knockout models were used in previous studies to study the roles of TLR4 or TLR9. In addition, intracellular nucleic acid-sensing TLR9 plays either stimulatory or protective roles in different murine lupus models. Therefore, Sun and colleagues injected the ligands of TLR4 and TLR9 into the anti-dsDNA transgenic mice as a new model to investigate whether anti-dsDNA and co-activation of extracellular TLR4 and endosomal TLR9 impacts the pathogenesis of in normal background mice. Their data suggest that, in addition to anti-dsDNA, signaling pathways triggered by simultaneous activation of surface-expressed TLR4 and endosomal TLR9 can promote the progression of SLE. These results suggest that simultaneous targeting of anti-dsDNA, TLR4 and 9 may be a potential therapy for SLE.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "These studies in offer new concepts for affecting immune tolerance and reducing SLE disease progression as future therapeutics are developed."

Explore further: Kidney involvement, high anti-dsDNA predict lupus flares

Related Stories

Kidney involvement, high anti-dsDNA predict lupus flares

July 2, 2013
(HealthDay)—Kidney involvement and high anti-double stranded (ds) DNA are independent predictors of moderate-severe lupus flare, according to research published online June 10 in Arthritis & Rheumatism.

Genetic mutation causes lupus in mice

January 3, 2014
Yale researchers have identified a genetic mutation that leads to lupus in mice. The discovery could open the way for development of therapies that target the mutation. The study appears in Cell Reports.

Unique individual demonstrates desired immune response to HIV virus

March 10, 2014
One person's unique ability to fight HIV has provided key insights into an immune response that researchers now hope to trigger with a vaccine, according to findings reported by a team that includes Duke Medicine scientists.

A nanogel-based treatment for lupus

March 1, 2013
Systemic lupus erythematosus (SLE) is disease in which the immune system mistakenly attacks healthy tissues, resulting in inflammation and tissue damage. Current treatments are focused on suppression of the immune system, ...

Predictors of organ damage identified in patients with SLE

December 16, 2012
(HealthDay)—Patient age, hypertension, and corticosteroid use are the most important predictors of the cumulative organ damage that occurs in patients with systemic lupus erythematosus (SLE), according to research published ...

Commonly used drugs may not be effective against autoimmune illness

March 17, 2014
(Medical Xpress)—Drugs for autoimmune diseases like lupus that block only one of the two principal signaling pathways can activate an overabundance of one potentially disease-causing type of immune cell population over ...

Recommended for you

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

'Superbugs' study reveals complex picture of E. coli bloodstream infections

July 18, 2017
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant 'superbugs' are not always out-competing other strains. Research by ...

Ebola virus can persist in monkeys that survived disease, even after symptoms disappear

July 17, 2017
Ebola virus infection can be detected in rhesus monkeys that survive the disease and no longer show symptoms, according to research published by Army scientists in today's online edition of the journal Nature Microbiology. ...

Mountain gorillas have herpes virus similar to that found in humans

July 13, 2017
Scientists from the University of California, Davis, have detected a herpes virus in wild mountain gorillas that is very similar to the Epstein-Barr virus in humans, according to a study published today in the journal Scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.