How to erase a memory—and restore it

June 1, 2014
Scientists have switched a fear memory on and off in genetically-engineered rats -- using a flash of light. Optogenetic technology produced this first cause-and-effect evidence that memories are formed by strengthened connections between neurons. Credit: Roberto Malinow, M.D., Ph.D., of the University of California, San Diego

Using a flash of light, scientists have inactivated and then reactivated a memory in genetically engineered rats. The study, supported by the National Institutes of Health, is the first cause-and-effect evidence that strengthened connections between neurons are the stuff of memory.

"Our results add to mounting evidence that the brain represents a by forming assemblies of neurons with strengthened connections, or synapses, explained Roberto Malinow, M.D., Ph.D., of the University of California, San Diego (UCSD), a grantee of the NIH's National Institute of Mental Health (NIMH). "Further, the findings suggest that weakening synapses likely disassembles neuronal assemblies to inactivate a memory."

Malinow, Roger Tsien, Ph.D., a grantee of NIH's National Institute on Neurological Disorders and Stroke (NINDS), and other UCSD colleagues, report June 1, 2014 in the journal Nature on their findings using cutting edge optical/gene-based technology.

"Beyond potential applications in disorders of memory deficiency, such as dementia, this improved understanding of how memory works may hold clues to taking control of runaway emotional memories in mental illnesses, such as post-traumatic stress disorder," said NIMH director Thomas R. Insel, M.D.

Neuroscientists have long suspected that strengthened connections between neurons – called long-term potentiation (LTP) – underlies memory formation, But proof had remained elusive, until now.

The Malinow team proved it by detecting LTP when forming a memory, removing the memory with a process known to reverse LTP, and then bringing the memory back via LTP – all by modifying the strength of synapses in a memory circuit.

To gain the precise control needed to show such a cause-and-effect relationship, Malinow's team turned to one of neuroscience's most powerful new tools: optogenetics. It adapts the same cellular machinery that allows primitive organisms like algae to be controlled by light from the sun to control specific brain circuit components instantly with a laser – even in a behaving animal.

In conventional rodent fear conditioning experiments, a tone is paired with a foot shock to induce a of the tone. If the memory is active, the animal freezes and shows reduced reward-seeking behaviors when it hears the tone. Instead of the tone, Malinow's team paired the shock with direct optogenetic stimulation, lighting up a specific group of neurons in a known auditory fear memory circuit.

Such precise targeting wasn't possible with earlier electrical stimulation techniques. "It's just a jungle in the brain – too many nerve cells coming through in any one place," explained Malinow.

By varying the pattern of optogenetic stimulation, the researchers were able to strengthen connections between neurons in the circuit by promoting LTP or weaken the connections by promoting a countervailing process called long-term depression (LTD). This made it possible to readily form a fear memory, remove it, and then bring it back.

Moreover, upon closer optogenetic probing in postmortem brains, the targeted circuit showed telltale changes in sensitivity of brain chemical messenger systems. These changes confirmed the hypothesized role of strengthening and weakening of synaptic connections in the switching on-and-off of the memory.

"We have shown that the damaging products that build up in the brains of Alzheimer's disease patients can weaken synapses in the same way that we weakened synapses to remove a memory," said Malinow. "So this line of research could suggest ways to intervene in the process."

"In addition to eliminating any doubt about a link between LTP/LTD with memories, this work highlights the staggering potential of precision targeting and circuit manipulation for alleviating maladaptive memories," said project officer Chiiko Asanuma,Ph.D., of the NIMH Division of Neuroscience and Basic Behavioral Science.

"This work provides a nice demonstration of how the field of neuroscience is being transformed by the types of technologies that are at the heart of President Obama's BRAIN Initiative," said Edmund Talley, Ph.D., program director at the NINDS.

Explore further: Memory accuracy and strength can be manipulated during sleep

More information: Paper: Engineering a memory with LTD and LTP, DOI: 10.1038/nature13294

Related Stories

Memory accuracy and strength can be manipulated during sleep

April 8, 2014
The sense of smell might seem intuitive, almost something you take for granted. But researchers from NYU Langone Medical Center have found that memory of specific odors depends on the ability of the brain to learn, process ...

Mechanism behind the activation of dormant memory cells discovered

February 20, 2014
The electrical stimulation of the hippocampus in in-vivo experiments activates precisely the same receptor complexes as learning or memory recall. This has been discovered for the first time and the finding has now been published ...

Biochemical mechanisms of memory

December 9, 2013
A discovery by a research team led by Ryohei Yasuda at the Max Planck Florida Institute for Neuroscience has significantly advanced basic understanding of biochemical mechanisms associated with how memories are formed.

How connections in the brain must change to form memories could help to develop artificial cognitive computers

November 7, 2012
Exactly how memories are stored and accessed in the brain is unclear. Neuroscientists, however, do know that a primitive structure buried in the center of the brain, called the hippocampus, is a pivotal region of memory formation. ...

Novel combination of techniques reveals new details about the neuronal networks for memory

February 7, 2014
Learning and memory are believed to occur as a result of the strengthening of synaptic connections among neurons in a brain structure called the hippocampus. The hippocampus consists of five subregions, and a circuit formed ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

russell_russell
not rated yet Jun 05, 2014
Paragraphs two and thirteen on spot on.
Commendable progress.
Noninvasive too.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.