Researchers develop genetic profile of the Netherlands

June 30, 2014 by Annette Kik
Researchers develop genetic profile of the Netherlands

In a large-scale research project under supervision of University Medical Center Groningen (UMCG) researchers have developed a genetic profile of the Netherlands. The researchers have mapped the DNA sequences of 250 family trios, consisting of two parents and one child, across the Netherlands. It is the first time that the genes of healthy persons have been analyzed in this number and with this precision.

The research is published in Nature Genetics on 29 June 2014.

"This profile allows for connecting to illnesses," says project leader Cisca Wijmenga (UMCG). "The Genome of the Netherlands can greatly accelerate research into genes that play a key role in the development of chronical and age-related diseases. We can now focus specifically on the disease-causing genes. The Genome of the Netherlands provides a catalogue that shows which amount of DNA variation is tolerable, and which amound eventually causes a disease."

A noticeable result is that every participant in this research on average turned out to have twenty mutations that were thought to cause rare diseases, although the participants were perfectly healthy.

Faster Big Data algorithms developed by Alexander Schönhuth from the Centrum Wiskunde & Informatica (CWI) are the first to be able to analyze and compare full DNA sequences. 'Previous methods were too slow to use all elements in the data set,'says Schönhuth.

"There are good algorithms available to detect small and large variations, but middle-sized DNA differences were harder to find. No less than 98.4% of all variations our techniques found in this bandwidth were new and previously unknown."

Explore further: Researchers find genome sequencing can be used to identify severe intellectual disability

More information: Whole-genome sequence variation, population structure and demographic history of the Dutch population, Nature Genetics,

Related Stories

Researchers find genome sequencing can be used to identify severe intellectual disability

June 5, 2014
(Medical Xpress)—A large team of researchers based in the Netherlands has found that whole genome sequencing can be used to identify a large percentage of patients who have a severe intellectual disability (SID). In their ...

Aging contributes to rapid rates of genomic change, signaling challenges for personalized medicine

June 24, 2014
(Medical Xpress)—Exploiting individual genomes for personalized medicine may be more complicated than medical scientists have suspected, researchers at Virginia Bioinformatics Institute have discovered.

Finding the switch: Researchers create roadmap for gene expression

April 13, 2014
In a new study, researchers from North Carolina State University, UNC-Chapel Hill and other institutions have taken the first steps toward creating a roadmap that may help scientists narrow down the genetic cause of numerous ...

Powerful tool combs family genomes to find shared variations causing disease

May 29, 2014
Scientists at the University of Utah (U of U), the University of Texas MD Anderson Cancer Center in Houston and colleagues have developed a powerful tool called pVAAST that combines linkage analysis with case control association ...

Predicting human body height from DNA

November 20, 2013
Predicting adult body height from genetic data is helpful in several areas such as pediatric endocrinology and forensic investigations. However, despite large international efforts to catalogue the genes that influence the ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 30, 2014
Re: "...every participant in this research on average turned out to have twenty mutations that were thought to cause rare diseases, although the participants were perfectly healthy."

If the "mutations" were directly linked to nutrient-dependent SNPs; altered intracellular thermodynamics of seemingly futile cycles of protein biosynthesis and degradation; and to pheromone-controlled reproduction via the metabolism of nutrients, it would become obvious that the amino acid substitutions, which differentiate the cell types of all individuals in all species are not mutations. Wouldn't it?

If so, the question of how mutations contribute to the organism-level thermoregulation required for species diversity could be answered correctly by saying: mutations perturb protein folding; they do not lead to natural selection and the evolution of biodiversity.
not rated yet Jun 30, 2014

"An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrientdependent reproductively fit individuals across species of vertebrates."

ISHE 2013 video

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.