Viral infections, including flu, could be inhibited by naturally occurring protein

June 12, 2014, University of Pittsburgh Schools of the Health Sciences
influenza
Electron microscopy of influenza virus. Credit: CDC

By boosting a protein that naturally exists in our cells, an international team of researchers led by the University of Pittsburgh Cancer Institute (UPCI), partner with UPMC CancerCenter, has found a potential way to enhance our ability to sense and inhibit viral infections.

The laboratory-based discovery, which could lead to more effective treatments for ranging from hepatitis C to the flu, appears in the June 19 issue of the journal Immunity. The research is supported by the National Institutes of Health.

"Despite remarkable advances in vaccination and treatment, diseases caused by remain among the leading causes of death worldwide," said senior author Saumendra N. Sarkar, Ph.D., assistant professor of microbiology and molecular genetics at UPCI. "We need new defenses against viral infections, and our discovery is proving to be a promising avenue for further exploration."

Dr. Sarkar and his team made the discovery while investigating a protein called oligoadenylate synthetases-like, or OASL, which appears in increased quantities in people with liver cancer caused by the hepatitis C virus.

Hepatitis C, influenza, the childhood respiratory illness RSV, and many other viruses are known as ribonucleic acid (RNA) viruses, which use RNA as their genetic material when they replicate. The OASL protein enhances cells' ability to detect virus RNA, activating the immune system to sense the virus and inhibit replication.

In laboratory tests, boosting this protein in human cells effectively inhibits . Conversely, mice that do not have OASL were found to be much more susceptible to viral infections.

The finding is especially notable because it may offer an alternative to interferons, another kind of that is made and released by cells in response to viruses. Interferons are used in therapy against some viral infections, including hepatitis C, but are not effective for other RNA viruses, such as influenza. Interferon therapy also has major side effects, and not all patients respond well to treatment.

Dr. Sarkar and his team plan to determine the most efficient way to boost the OASL pathway in patients and are working with pulmonologists to develop and identify funding for a study to evaluate the effect of boosting OASL in people with .

"The respiratory system is a much easier target to deliver this type of therapy, compared to an organ, such as the liver, so we'll be starting with infections like RSV," said Dr. Sarkar. "From there we could branch out to other RNA viruses and perhaps find effective ways to boost our inherent immunity against a broad range of viral infections."

Explore further: Hepatitis C virus: How viral proteins interact in human cells

Related Stories

Hepatitis C virus: How viral proteins interact in human cells

May 8, 2014
Scientists at the Helmholtz Zentrum München have for the first time decrypted the interaction network of hepatitis C virus proteins in living human cells. Their findings will contribute to a better understanding of the mechanisms ...

Scientists find new way to mobilize immune system against viruses

May 12, 2014
University of British Columbia scientists have uncovered an intricate chain reaction in the body's immune system and have used the knowledge to develop a new treatment against harmful viruses.

Trick that aids viral infection is identified

January 30, 2014
Scientists have identified a way some viruses protect themselves from the immune system's efforts to stop infections, a finding that may make new approaches to treating viral infections possible.

Patient, heal thyself: Solution to personalised treatment for chronic infections could lie in patient's own blood

September 20, 2013
A recent discovery by scientists at A*STAR's Singapore Institute for Clinical Sciences (SICS), in close collaboration with researchers at the Singapore Immunology Network (SIgN), provides hope for a new personalised treatment ...

Recommended for you

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.