Cancer researchers identify new metastasis suppressor gene

July 14, 2014

(Medical Xpress)—Among patients with deadly cancers, more than 90 percent die because of metastatic spread of their disease. Looking to target a key pathway in order to interfere with the processes that lead to tumor spread, a research team led by Irwin H. Gelman, Ph.D., of Roswell Park Cancer Institute (RPCI) has identified a new suppressor of cancer metastasis that may point the way toward development of more effective treatments for prostate cancers and other malignant solid tumors.

Activation of the PI3K/AKT signal pathway is a known driver of the progression of to the castrate-resistant stage, the most lethal form of prostate cancer. Using a genome-wide genetic screen, Dr. Gelman and colleagues identified a previously unknown metastasis suppressor—the FOXO4 protein, which belongs to a family of genes that are produced by all human cells.

"Evidence from several publicly available cancer genomic databanks indicates that FOXO4 is typically turned off in compared to primary prostate tumors. Our research showed that the FOXO4 gene normally turns off genes that control specific metastatic behavior in malignant tumor cells, such as the ability to invade tissues and then to survive and multiply there," says Dr. Gelman, the John & Santa Palisano Chair in Cancer Genetics at RPCI.

In demonstrating that FOXO4 works to prevent the spread of cancerous tumors by binding to and inhibiting the protein RUNX2, the team identified a circuit that controls metastatic progression in prostate cancer.

"Our findings underline the importance of RUNX2 in promoting metastasis and suggest that drugs that inhibit its function would prevent or treat prostate cancer metastasis," notes Dr. Gelman. "Given the devastating impact of cancer metastasis and the dire need for therapies to combat tumor spread, we're highly encouraged by these findings and excited about the therapeutic possibilities they open up."

Dr. Gelman's lab is now working with collaborators at the University of Maryland to test the effectiveness of the experimental agent CADD522, an inhibitor of RUNX2 function, in preventing or impeding prostate .

Explore further: Researchers advance findings on key gene related to cancer metastasis

More information: Su B, Gao L, Baranowski C, Gillard B, Wang J, et al. (2014) "A Genome-Wide RNAi Screen Identifies FOXO4 as a Metastasis-Suppressor through Counteracting PI3K/AKT Signal Pathway in Prostate Cancer." PLoS ONE 9(7): e101411. DOI: 10.1371/journal.pone.0101411

Related Stories

Researchers advance findings on key gene related to cancer metastasis

February 4, 2014
(Medical Xpress)—New evidence reported by researchers at Roswell Park Cancer Institute (RPCI) lends support to the hypothesis that the SSeCKS/AKAP12 gene is a key inhibitor of prostate cancer metastasis. The data are some ...

Enzyme used in antidepressants could help researchers develop prostate cancer treatments

June 2, 2014
An international team of scientists including researchers at the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute and the University of Southern California found that an enzyme commonly used as a target for antidepressants ...

Stopping the spread of breast cancer

June 3, 2014
The primary cause of death from breast cancer is the spread of tumor cells from the breast to other organs in the body. Northwestern Medicine® scientists have discovered a new pathway that can stop breast cancer cells from ...

COUP-TFII sparks prostate cancer progression

November 28, 2012
Prostate cancer presents a dilemma for patients and the physicians who treat them. Which cancers are essentially indolent and present no risk and which are life threatening? Which can be watched and which need aggressive ...

Researchers discover protein that may control the spread of cancer

February 26, 2013
Researchers at the University of Hawai'i Cancer Center have uncovered a novel mechanism that may lead to more selective ways to stop cancer cells from spreading. Associate Professor Joe W. Ramos PhD, a cancer biologist at ...

Scientists develop powerful new animal model for metastatic prostate cancer

January 24, 2014
Prostate cancer is the most common form of cancer in men. Affecting about 1 in 6 men, it is the second deadliest cancer. Research has been stymied by imperfect animal models of the disease, which are costly, take considerable ...

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.