Cell's recycling center implicated in division decisions

July 28, 2014

Most cells do not divide unless there is enough oxygen present to support their offspring, but certain cancer cells and other cell types circumvent this rule. Researchers at The Johns Hopkins University have now identified a mechanism that overrides the cells' warning signals, enabling cancers to continue to divide even without a robust blood supply. In the process, the researchers found that lysosomes—the cell's protein "recycling centers"—help govern cell division decisions. They also uncovered new evidence that certain drugs can halt the growth of tumors that have high levels of the protein HIF-1alpha.

A summary of their findings will be published the week of July 28 in the journal PNAS.

Low levels of oxygen stimulate the production and activation of HIF-1alpha, which protects cells in two ways. Primarily, it turns on several genes for proteins that help the cells adapt to the lack of oxygen. It can also stop the duplication of DNA, which prevents cells from dividing and adding more oxygen-using cells to an already harsh environment.

Knowing that some cells ignore the warnings of HIF-1alpha and divide anyway, Gregg Semenza, M.D., Ph.D., and his team looked for interactions between HIF-1alpha and Cdk1 and Cdk2, proteins known to regulate cell division decisions. They found that HIF-1alpha interacts with both of them, but that Cdk1 increases HIF-1alpha levels, while Cdk2 lowers them.

Semenza's team suspected that Cdk1 and Cdk2 were acting on HIF-1alpha by marking or not marking it for destruction by the cell's miniature "garbage disposals," called proteasomes. But when the researchers blocked proteasome function, they found no changes in HIF-1alpha levels. Instead, Cdk1 and Cdk2 turned out to alter HIF-1alpha levels by marking or not marking it for destruction by the cell's lysosomes. To their knowledge, this is the first time have been implicated in a cell's division decisions.

Remarkably, in certain , Cdk2 was able to decrease levels of HIF-1alpha while also stimulating its gene activation activity. The net effect was that cells continued dividing while coping with low . In cultured cells, drugs that inhibit Cdk1 prevented HIF-1alpha levels from falling and restored its ability to halt cell division, suggesting they may be effective treatments for certain cancers.

Explore further: Researchers link cell division and oxygen levels

More information: PNAS DOI: 10.1073/pnas.1412840111

Related Stories

Researchers link cell division and oxygen levels

June 11, 2011
Cells grow abundant when oxygen is available, and generally stop when it is scarce. Although this seems straightforward, no direct link ever has been established between the cellular machinery that senses oxygen and that ...

Signals found that recruit host animals' cells, enabling breast cancer metastasis

May 22, 2014
Working with mice, Johns Hopkins researchers report they have identified chemical signals that certain breast cancers use to recruit two types of normal cells needed for the cancers' spread. A description of the findings ...

Understanding cancer energetics

June 4, 2011
(Medical Xpress) -- It's long been known that cancer cells eat a lot of sugar to stay alive. In fact, where normal, noncancerous cells generate energy from using some sugar and a lot of oxygen, cancerous cells use virtually ...

Research helps clarify how obesity leads to type 2 diabetes, cancer

June 5, 2014
New findings about the biological links between obesity, insulin resistance and type 2 diabetes may also shed light on the connection between obesity and cancer, says a scientist at The University of Texas at Dallas.

How breast cancer spreads: Researchers find key to lymph node metastasis in mice

September 10, 2012
The invasion of cancer cells into the lymph vessels that connect the breast to surrounding lymph nodes is the first step leading to the metastasis, or spread, of cancer throughout the body. Metastasis is the primary cause ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.