Study suggests disruptive effects of anesthesia on brain cell connections are temporary

July 28, 2014, University of California - San Diego

A study of juvenile rat brain cells suggests that the effects of a commonly used anesthetic drug on the connections between brain cells are temporary.

The study, published in this week's issue of the journal PLOS ONE, was conducted by biologists at the University of California, San Diego and Weill Cornell Medical College in New York in response to concerns, arising from multiple studies on humans over the past decade, that exposing children to general anesthetics may increase their susceptibility to long-term cognitive and behavioral deficits, such as learning disabilities.

An estimated six million children, including 1.5 million infants, undergo surgery in the United States requiring general anesthesia each year and a least two large-scale clinical studies are now underway to determine the potential risks to children and adults.

"Since these procedures are unavoidable in most cases, it's important to understand the mechanisms associated with the potentially toxic effects of anesthetics on the developing brain, and on the adult brain as well," said Shelley Halpain, a professor of biology at UC San Diego and the Sanford Consortium for Regenerative Medicine, who co-headed the investigation. "Because the clinical studies haven't been completed, preclinical studies, such as ours, are needed to define the effects of various anesthetics on brain structure and function."

"There is concern now about cognitive dysfunction from surgery and anesthesia—how much these effects are either permanent or slowly reversible is very controversial," said Hugh Hemmings, Jr., chair of anesthesiology at Weill Cornell and the study's other senior author. "It has been suggested recently that some of the effects of anesthesia may be more lasting than previously thought. It is not clear whether the residual effects after an operation are due to the surgery itself, or the hospitalization and attendant trauma, medications and stress—or a combination of these issues."

However, he added, "There is evidence that some of the delayed or persistent cognitive effects after surgery are not primarily due to anesthesia itself, but more importantly to brain inflammation resulting from the surgery. But this is not yet clear."

The team of biologists examined one of the most commonly used general anesthetics, a derivative of ether called "isoflurane" used to maintain anesthesia during surgery.

"Previous studies in cultured neurons and in the intact brains of rodents provided evidence suggesting that exposure to anesthetics might render neurons more susceptible to cell death through a process called 'apoptosis'," said Halpain. "While overt cell death could certainly be one way to explain any long-lasting neurocognitive consequences of general anesthesia, we hypothesized that there could be other cellular mechanisms that disrupt neural circuits without inducing cell death per se."

One such mechanism, she added, is known as "synaptotoxicity." In this mechanism of neural-circuit disruption, the "synapses," or junctions between neurons, become weakened or shrink away due to some factor that injures the neurons locally along their axons (the long processes of neurons that transmit signals) and dendrites (the threadlike extensions of neurons that receive nerve signals) without inducing the neurons themselves to die.

In the experiments at UC San Diego headed by Jimcy Platholi, a postdoctoral researcher in Halpain's lab who is now at Weill Cornell, the scientists used neurons from embryonic rats taken from the hippocampus, a part of the mammalian forebrain essential for encoding newly acquired memories and ensuring that short-term memories are converted into long-term memories. The researchers cultured these in a laboratory dish for three weeks, allowing the neurons time to mature and to develop a dense network of synaptic connections and "dendritic spines"—specialized structures that protrude from the dendrites and are essential mediators of activity throughout neural networks.

"Evidence from animal studies indicates that new dendritic spines emerge and existing spines expand in size during learning and memory," explained Halpain. "Therefore, the overall numbers and size of dendritic spines can profoundly impact the strength of neural networks. Since neural network activity underlies all brain function, changes in dendritic spine number and shape can influence cognition and behavior."

Using neurons in culture, rather than intact animal brains, allowed the biologists to take images of the synapses at high spatial resolution using techniques called fluorescence light microscopy and confocal imaging. They also used time-lapse microscopy to observe structural changes in individual dendritic spines during exposure to isoflurane. Karl Herold, a research associate in the Hemmings laboratory and a co-author of the study, performed some of the image analysis.

"Imaging of human brain synapses at this level of detail is impossible with today's technology and it remains very challenging even in laboratory rodents," said Halpain. "It was important that we performed our study using rodent in a culture dish, so that we could really drill down into the subcellular and molecular details of how anesthetics work."

The researchers wondered whether brief exposure to isoflurane would alter the numbers and size of dendritic spines, so they applied the anesthetic to the cultured rat cells at concentrations and durations (up to 60 minutes) that are frequently used during surgery.

"We observed detectable decreases in dendritic spine numbers and shape within as little as 10 minutes," said Halpain. "However this spine loss and shrinkage was reversible after the anesthetic was washed out of the culture."

"Our study was reassuring in the sense that the effects are not irreversible and this fits in with known clinical effects," said Hemmings. "For the most part, we find that the effects are reversible."

"We clearly see an effect—a very marked effect on the —from use of this drug that was reversible, suggesting that it is not a toxic effect, but something more relevant to the pharmacological actions of the drug," he added. "Connecting what we found to the cognitive effects of isoflurane will require much more detailed analysis."

The team plans to follow up its study with future experiments to probe the molecular mechanisms and long-lasting consequences of isoflurane's effects on neuron synapses and examine other commonly-used anesthetics for surgery.

Explore further: Major dopamine system helps restore consciousness after general anesthesia, study finds

More information: PLOS ONE DOI: 10.1371/journal.pone.0102978

Related Stories

Major dopamine system helps restore consciousness after general anesthesia, study finds

July 22, 2014
Researchers may be one step closer to better understanding how anesthesia works. A study in the August issue of Anesthesiology, the official medical journal of the American Society of Anesthesiologists (ASA), found stimulating ...

Study expands concerns about anesthesia's impact on the brain

June 5, 2013
As pediatric specialists become increasingly aware that surgical anesthesia may have lasting effects on the developing brains of young children, new research suggests the threat may also apply to adult brains.

Sleep after learning strengthens connections between brain cells and enhances memory

June 5, 2014
In study published today in Science, researchers at NYU Langone Medical Center show for the first time that sleep after learning encourages the growth of dendritic spines, the tiny protrusions from brain cells that connect ...

New connections between brain cells form in clusters during learning

February 19, 2012
New connections between brain cells emerge in clusters in the brain as animals learn to perform a new task, according to a study published in Nature on February 19 (advance online publication). Led by researchers at the University ...

Anesthesia drugs really do put us to sleep

October 25, 2012
When patients are put under anesthesia, they are often told they will be "put to sleep," and now it appears that in some ways that's exactly what the drugs do to the brain. New evidence in mice reported online on October ...

Biochemical mechanisms of memory

December 9, 2013
A discovery by a research team led by Ryohei Yasuda at the Max Planck Florida Institute for Neuroscience has significantly advanced basic understanding of biochemical mechanisms associated with how memories are formed.

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.