Glitch in neural garbage removal enhances degenerative risk

July 3, 2014

An international team of researchers identified a pathogenic mechanism that is common to several neurodegenerative diseases. The findings suggest that it may be possible to slow the progression of dementia even after the onset of symptoms.

The relentless increase in the incidence of dementia in aging societies poses an enormous challenge to health-care systems. An international team of researchers led by Professor Christian Haass and Gernot Kleinberger at the LMU's Adolf-Butenandt-Institute and the German Center for Neurodegenerative Diseases (DZNE), has now elucidated the mode of action of a that contributes to the development of several different dementia syndromes.

Neurodegenerative disorders such as Alzheimer's and Parkinson's diseases or display a number of common features. They are all characterized by the appearance in the brains of affected patients of abnormally high levels of insoluble protein deposits, which are associated with massive loss of . In order to minimize further damage to nerve cells in the vicinity of such deposits, and the proteinaceous aggregates released from them must be efficiently degraded and disposed of. This task is performed by specialized phagocytic cells – the so-called microglia – which act as "sanitary inspectors" in the brain to ensure the prompt removal of debris that presents a danger to the health of nearby cells. Microglia are found only in the central nervous system, but functionally they represent a division of the body's innate immune system.

As Haass and his colleagues now report in the latest issue of the journal Science Translational Medicine, specific mutations in the gene for a protein called TREM2, which regulates the uptake of waste products by microglia, lead to its absence from the cell surface. TREM2 is normally inserted into the plasma membrane of microglial cells such that part of it extends through the membrane as an extracellular domain. This exposed portion of TREM2 is responsible for the recognition of waste products left behind by dead cells. "We believe that the genetic defect disrupts the folding of the protein chain soon during its synthesis in the cell, so that it is degraded before it can reach the surface of the microglia," says Kleinberger. As a result, the amount of debris that the microglia can cope with is significantly reduced. Consequently, the toxic protein deposits, as well as whole dead cells, cannot be efficiently removed and continue to accumulate in the brain. This is expected to trigger inflammatory reactions that may promote further nerve-cell loss.

The new study thus pinpoints a mechanism that influences the course of several different brain diseases. "In addition, our findings may perhaps point to ways of slowing the rate of progression of these illnesses even after the manifestation of overt signs of dementia, which has not been possible so far," says Haass. "That this may indeed be feasible is suggested by the initial results of an experiment in which we were able to stimulate the phagocytic activity of microglia by pharmacological means."

Explore further: Cancer drugs block dementia-linked brain inflammation, study finds

More information: "TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis", Gernot Kleinberger, Yoshinori Yamanishi, Marc Suárez-Calvet, Eva Czirr, Ebba Lohmann, Elise Cuyvers, Hanne Struyfs, Nadine Pettkus, Andrea Wenninger-Weinzierl, Fargol Mazaheri, Sabina Tahirovic, Alberto Lleó, Daniel Alcolea, Juan Fortea, Michael Willem, Sven Lammich, José L. Molinuevo, Raquel Sánchez-Valle, Anna Antonell, Alfredo Ramirez, Michael T. Heneka, Kristel Sleegers, Julie van der Zee, Jean-Jacques Martin, Sebastiaan Engelborghs, Asli Demirtas-Tatlidede, Henrik Zetterberg, Christine Van Broeckhoven, Hakan Gurvit, Tony Wyss-Coray, John Hardy, Marco Colonna and Christian Haass, Sci Transl Med 2 July 2014: Vol. 6, Issue 243, p. 243ra86. Sci. Transl. Med. DOI: 10.1126/scitranslmed.3009093

Related Stories

Cancer drugs block dementia-linked brain inflammation, study finds

April 16, 2014
A class of drugs developed to treat immune-related conditions and cancer – including one currently in clinical trials for glioblastoma and other tumors – eliminates neural inflammation associated with dementia-linked ...

Faulty internal recycling by brain's trash collectors may contribute to Alzheimer's

September 4, 2013
A defective trash-disposal system in the brain's resident immune cells may be a major contributor to neurodegenerative disease, a scientific team from the Stanford University School of Medicine has found.

Study identifies genes uniquely expressed by the brain's immune cells

November 14, 2013
Massachusetts General Hospital (MGH) investigators have used a new sequencing method to identify a group of genes used by the brain's immune cells – called microglia – to sense pathogenic organisms, toxins or damaged ...

New research findings on the brain's guardian cells

April 24, 2013
The central nervous system's mop-up crew, microglia, play an important role in protecting the brain against disease and injury. A research group at Lund University in Sweden has now developed a method that makes it possible ...

Immune cells of the blood might replace dysfunctional brain cells

October 22, 2012
Blood-circulating immune cells can take over the essential immune surveillance of the brain, this is shown by scientists of the German Center for Neurodegenerative Diseases and the Hertie Institute for Clinical Brain Research ...

Recommended for you

Firing of neurons changes the cells that insulate them

August 22, 2017
Through their pattern of firing, neurons influence the behavior of the cells that upon maturation will provide insulation of neuronal axons, according to a new study publishing 22 August in the open access journal PLOS Biology ...

Activating brain region creates intense desire to use cocaine

August 22, 2017
Researchers have identified a portion of the brain that intensifies one's desire for certain rewards—in this case, mimicking addiction to cocaine.

Brain region mediates pleasure of eating

August 22, 2017
Providing the body with food is essential for survival. But even when full, we can still take pleasure in eating. Researchers at the Max Planck Institute of Neurobiology in Martinsried and the Friedrich Miescher Institute ...

Study suggests serotonin may worsen tinnitus

August 22, 2017
Millions of people suffer from the constant sensation of ringing or buzzing in the ears known as tinnitus, creating constant irritation for some and severe anxiety for others. Research by scientists at OHSU shows why a common ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Contact in sports may lead to differences in the brains of young, healthy athletes

August 22, 2017
People who play contact sports show changes to their brain structure and function, with sports that have greater risk of body contact showing greater effects on the brain, a new study has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.