Researchers developing immortal line of breast cancer cells

July 17, 2014 by Jim Ritter
Kimberly Koss has entrusted her cancer cells to Loyola researcher Keith Jones for the development of an immortal cell line

Biomedical scientist Kimberly L. Koss, PhD, is fighting an extremely aggressive and difficult-to-treat form of breast cancer.

She hopes that long after she dies, her cancer cells will continue to live on in an immortal cell line being developed at Loyola University Chicago Stritch School of Medicine. "I think we can unlock the secrets of these deadly cells," she said. "The cell line could benefit women with all forms of ."

The cell line would be similar to the immortal line of cervical cancer cells made famous by the bestselling book The Immortal Life of Henrietta Lacks – with one crucial difference. While the cervical cancer cell line was derived from patient Henrietta Lacks without her knowledge or consent, Koss has enthusiastically entrusted her cells to Keith Jones, PhD, who heads a research team at Loyola. Indeed, the cell line was Koss' idea.

Koss, 57, has an especially aggressive form of breast cancer known as triple negative, meaning her test negative for estrogen, progesterone and HER-2 receptors. Thus, targeting these receptors is ineffective in triple negative patients. Triple negative breast cancer is more likely to spread than other forms of breast cancer. It accounts for 10 percent to 20 percent of all breast cancers, and disproportionally affects African Americans.

Standard treatment for triple negative breast cancer includes chemotherapy prior to surgery to shrink tumors. Koss, who was treated at a different center than Loyola, decided to forgo chemotherapy before her surgery. While chemotherapy could have improved her chances, the damage done to the tumor cells would have made it difficult to create a usable cell line.

"She is very brave and self-sacrificing," Jones said.

Jones is chair of the Department of Molecular Pharmacology and Therapeutics. He and Koss are scientific colleagues and friends. They collaborated on research projects at the University of Cincinnati, where they both used to work. Jones has since joined Loyola, while Koss has retired from researching cellular metabolic regulation to start a new career as a tutor and mentor of high-performing science and math students.

It was while Jones was visiting Koss in an oncology critical care unit that Koss suggested entrusting her tumor cells to Jones at Loyola.

"Dr. Jones is absolutely the smartest researcher I've ever met," she said. "I trust him on every level."

An immortal cell line is highly unusual, since normal cells naturally stop dividing after a certain number of divisions. But cells with certain mutations, such as cancer cells, can evade this limit and continue dividing indefinitely. Jones is confident an immortal cell line can be created from Koss' cells.

The cell line will be made immediately available to basic researchers at Loyola, and the hope is to eventually make it available to academic researchers elsewhere. Jones said the cell line could be used to help answer key questions, such as: Why are the cells abnormal? Why do they grow so quickly? Why are they so invasive? Answering such questions could lead to new treatments.

Various pathways in the cell act like circuits to regulate cell behavior. In cancer cells, these pathways go haywire. Targeting these dysfunctional pathways could kill or slow their growth, leading to new therapies. Such therapies also may work against other forms of breast cancer that share these features, Jones said.

Among other applications, Koss hopes the research will lead to a new immunotherapy treatment that would turn the patient's immune system into an effective weapon against cancer.

Koss has undergone a radical mastectomy and axillary dissection (removal of lymph nodes from under the arm), and soon will begin 18 weeks of postoperative chemotherapy.

She realizes that any breakthroughs in research derived from her cells might not come in time to help her. "It's a race against the clock," she said.

"But I have a daughter and three granddaughters," she added. "I hope they never get this disease. But if they do, new treatments could be their salvation, as well as the salvation of many other women."

Explore further: Research team identifies mechanism of chemotherapy resistance in inflammatory breast cancer

Related Stories

Research team identifies mechanism of chemotherapy resistance in inflammatory breast cancer

July 8, 2014
Researchers at Roswell Park Cancer Institute (RPCI) have identified a mechanism of breast cancer cells that leads to chemotherapy resistance in inflammatory breast cancer. These preclinical findings, published online ahead ...

Virus kills triple negative breast cancer cells, tumor cells in mice

June 24, 2014
A virus not known to cause disease kills triple-negative breast cancer cells and killed tumors grown from these cells in mice, according to Penn State College of Medicine researchers. Understanding how the virus kills cancer ...

Leukaemia gene provides clue to treating triple negative breast cancer

June 27, 2014
(Medical Xpress)—Cancer Research UK scientists have discovered that a gene previously linked to leukaemia could provide an urgently needed target for the development of drugs to treat patients with 'triple negative' breast ...

Potential cholesterol lowering drug has breast cancer fighting capabilities

June 17, 2014
Researchers at the University of Missouri have proven that a compound initially developed as a cholesterol-fighting molecule not only halts the progression of breast cancer, but also can kill the cancerous cells.

Aggressive breast cancers may be sensitive to drugs clogging their waste disposal

August 12, 2013
In a new paper in Cancer Cell, a team led by Judy Lieberman, PhD, of Boston Children's Hospital's Program in Cellular and Molecular Medicine reports "triple-negative" breast cancers may be vulnerable to drugs that attack ...

Signals found that recruit host animals' cells, enabling breast cancer metastasis

May 22, 2014
Working with mice, Johns Hopkins researchers report they have identified chemical signals that certain breast cancers use to recruit two types of normal cells needed for the cancers' spread. A description of the findings ...

Recommended for you

Retaining one normal BRCA gene in breast, ovarian cancers influences patient survival

August 22, 2017
Determining which cancer patients are likely to be resistant to initial treatment is a major research effort of oncologists and laboratory scientists. Now, ascertaining who might fall into that category may become a little ...

Study provides insight into link between two rare tumor syndromes

August 22, 2017
UCLA researchers have discovered that timing is everything when it comes to preventing a specific gene mutation in mice from developing rare and fast-growing cancerous tumors, which also affects young children. This mutation ...

Study identifies miR122 target sites in liver cancer and links a gene to patient survival

August 22, 2017
A new study of a molecule that regulates liver-cell metabolism and suppresses liver-cancer development shows that the molecule interacts with thousands of genes in liver cells, and that when levels of the molecule go down, ...

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.