Study identifies molecular key to healthy pregnancy

July 17, 2014, Cincinnati Children's Hospital Medical Center
pregnancy

Scientists have identified a crucial molecular key to healthy embryo implantation and pregnancy in a study that may offer new clues about the medical challenges of infertility/subfertility, abnormal placentation, and placenta previa.

Multi-institutional teams led by researchers at Cincinnati Children's Hospital Medical Center report their results in Cell Reports on July 17. The authors found that uterine expression of a gene called Wnt5a – a major signaling molecule in cell growth and movement in both and disease – is also critical to healthy in the uterus.

The scientists say that molecular signaling from Wnt5a – working in tandem with its co-receptors ROR1 and ROR2 in the uterus – causes uterine implantation chambers (crypts) in mice to form at regular intervals. The signaling also helps direct to migrate in the proper direction as they settle into the womb. The authors show that disruption of appropriate uterine Wnt5a-ROR signaling leads to abnormal uterine luminal epithelial architecture, crypt formation, disorderly spacing of embryos and implantation. These adverse effects led to defective decidualization, placentation, and ultimately compromised pregnancy outcome.

"Proper implantation is important to healthy pregnancy, and it is not clearly understood what prompts embryos to move and implant within a uterine crypt with regular spacing," said Sudhansu K. Dey, PhD, senior investigator and director of Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center. "If something goes wrong at this stage, there could be adverse effects throughout the course of pregnancy – whether it is subfertility, infertility, restricted growth, miscarriage or preterm birth."

Although there are similarities and differences between mouse and human implantation, a role for Wnt5a-ROR signaling in embryo spacing could be clinically relevant, Dey said. This is because the embryo can sometimes implant close to or on the cervix (), which can cause extensive bleeding and lead to increased mortality or morbidity for the mother and fetus. Aberrant embryo spacing may also contribute to complications in a multiple gestation pregnancy.

The current study is a continuation of the work Dey and his team published in 2011 in Developmental Cell. Also conducted in mice, this study showed two genes (Msx1 and Msx2 - which play integral roles in organ formation during fetal development) are also essential to direct the uterus to the receptive stage for successful embryo implantation. In that study, Dey and colleagues found that Wnt5a signaling is disrupted when Msx is inactivated in the uterus. This suggests that Msx genes have a molecular relationship with Wnt5a. Subsequent studies by Dey and colleagues reported that Msx genes may be critical for successful implantation in other mammalian species.

Now that the researchers have identified Wnt5a and ROR as key regulators in embryo spacing and implantation, their next study focuses on the specific molecular and biochemical pathways (and related functions) regulated by Wnt5a-ROR signaling.

Explore further: Increasing uterine expression of developmental genes may improve IVF success

Related Stories

Increasing uterine expression of developmental genes may improve IVF success

November 17, 2011
New research in Developmental Cell suggests that increasing expression of certain developmental genes at precise times in the uterus might improve pregnancy rates from in vitro fertilization-embryo transfers (IVF-ET), which ...

Study implicates marijuana use in pregnancy problems

September 12, 2012
New research indicates marijuana-like compounds called endocannabinoids alter genes and biological signals critical to the formation of a normal placenta during pregnancy and may contribute to pregnancy complications like ...

The 'entrance exam' that is key to a successful pregnancy

February 6, 2014
Researchers have discovered how an 'entrance exam' set by the womb determines if the implantation of an embryo is successful; potentially a milestone for advances in pregnancy treatments.

Efficacy doubts over pre-IVF hysteroscopy

June 30, 2014
A large multicentre trial seems finally to have resolved one of IVF's long-running controversies - whether the outlook for women with a poor IVF record can be improved by routine hysteroscopy performed before further IVF ...

Recommended for you

Japanese team creates human oogonia using human stem cells in artificial mouse ovaries

September 21, 2018
A team of researchers with members from several institutions in Japan has successfully generated human oogonia inside of artificial mouse ovaries using human stem cells. In their paper published in the journal Science, the ...

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

Researchers explore how changes in diet alter microbiome in artificial intestine

September 21, 2018
Using an artificial intestine they created, researchers have shown that the microbiome can quickly adapt from the bacterial equivalent of a typical western diet to one composed exclusively of dietary fats. That adaptation ...

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.