Scientists find genetic mutations linked to salivary gland tumors

July 28, 2014, The Scripps Research Institute

Research conducted at the Florida campus of The Scripps Research Institute (TSRI) has discovered links between a set of genes known to promote tumor growth and mucoepidermoid carcinoma, an oral cancer that affects the salivary glands. The discovery could help physicians develop new treatments that target the cancer's underlying genetic causes.

The research, recently published online ahead of print by the Proceedings of the National Academy of Sciences, shows that a pair of proteins joined together by a genetic mutation—known as CRTC1/MAML2 (C1/M2)—work with MYC, a protein commonly associated with other cancers, to promote the 's growth and spread.

"This research provides new insights into the molecular mechanisms of these malignances and points to a new direction for potential therapies," says TSRI biologist Michael Conkright, PhD, who led the study.

The C1/M2 protein is created when the genes encoding CRTC1 and MAML2 mutate into a single gene through a process known as . Such mutant "chimera" genes are linked to the formation of several forms of cancer. The team discovered that the C1/M2 protein further activates genetic pathways regulated by MYC, in addition to CREB, to begin a series of leading to the development of mucoepidermoid carcinoma.

"The identification of unique interactions between C1/M2 and MYC suggests that drugs capable of disrupting these interactions may have therapeutic potential in the treatment of mucoepidermoid carcinomas, " said Antonio L. Amelio, Ph.D., first author of the study who is now assistant professor with the UNC School of Dentistry and member of the UNC Lineberger Comprehensive Cancer Center.

Researchers have known about the role of C1/M2 and its interactions with another protein, CREB, in the development of mucoepidermoid carcinoma, and physicians screen patients for the presence of the C1/M2 protein when testing for this cancer. These new findings deepen the understanding of C1/M2's role by revealing that it works with a family of cancer-associated genes known as the MYC family to drive the necessary for a tumor to develop.

The discovery of these new protein interactions may also reveal insights into the mechanisms behind other cancers that arise due to other involving the CREB and MYC pathways.

Explore further: Master regulator of key cancer gene found, offers new drug target

More information: Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1319176111

Related Stories

Master regulator of key cancer gene found, offers new drug target

June 25, 2014
A key cancer-causing gene, responsible for up to 20 percent of cancers, may have a weak spot in its armor, according to new research from the Masonic Cancer Center, University of Minnesota.

Survival protein a potential new target for many cancers

January 7, 2014
Walter and Eliza Hall Institute researchers have discovered a promising strategy for treating cancers that are caused by one of the most common cancer-causing changes in cells.

Loss of memory in Alzheimer's mice models reversed through gene therapy

April 23, 2014
Alzheimer's disease is the leading cause of dementia and affects some 400,000 people in Spain alone. However, no effective cure has yet been found. One of the reasons for this is the lack of knowledge about the cellular mechanisms ...

New findings on neurogenesis in the spinal cord

March 5, 2014
Research from Karolinska Institutet in Sweden suggests that the expression of the so called MYC gene is important and necessary for neurogenesis in the spinal cord. The findings are being published in the journal EMBO Reports.

Researchers reveal treasure trove of genes key to kidney cancer

July 1, 2014
A genomic analysis of clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, from 72 patients has uncovered 31 genes that are key to development, growth and spread of the cancer, say researchers from ...

Gene in brain linked to kidney cancer

June 24, 2014
A gene known to control brain growth and development is heavily involved in promoting clear cell renal cell carcinoma, the most common form of kidney cancer, researchers from Mayo Clinic in Florida are reporting.

Recommended for you

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.