Researchers uncover an unexpected role for endostatin in the nervous system

July 24, 2014, University of California, San Francisco

Researchers at UC San Francisco (UCSF) have discovered that endostatin, a protein that once aroused intense interest as a possible cancer treatment, plays a key role in the stable functioning of the nervous system.

A substance that occurs naturally in the body, endostatin potently blocks the formation of new blood vessels. In studies in mice in the late 1990s, endostatin treatment virtually eliminated cancer by shutting down the blood supply to tumors, but subsequent human clinical trials proved disappointing.

"It was a very big surprise" to find that endostatin, through some other mechanism, helps to maintain the proper workings of synapses, the sites where communication between nerve cells takes place, said Graeme W. Davis, PhD, Hertzstein Distinguished Professor of Medicine in the Department of Biochemistry and Biophysics at UCSF and senior author of the new study. "Endostatin was not on our radar."

The findings were reported online July 24 in the journal Neuron.

Synapses are continually shaped and reshaped by experience, a phenomenon known as plasticity. But for those changes to be meaningful, said Davis, they must take place against a stable background, which paradoxically requires another form of change that he and colleagues call "homeostatic plasticity." Just as we change our pace, slowing down or speeding up, to keep abreast of a running partner, neurons adjust aspects of their function at synapses to compensate for changes in their synaptic partners brought on by aging, illness, or other factors.

In an example of homeostatic plasticity, in the neuromuscular disease myasthenia gravis, as muscle cells become less responsive to the neurotransmitter acetylcholine, ramp up their secretion of the neurotransmitter to keep the system in balance for as long as possible. Some researchers believe that in other disorders, including autism and schizophrenia, a failure in such homeostatic mechanisms keeps synapses from functioning properly.

In previous research Davis noticed that applying a toxin to a muscle cell in the fruit fly Drosophila melanogaster triggers homeostatic plasticity in the neuron that forms a synapse on that muscle cell: the neuron—which is called presynaptic, because it is "before" the synapse with the muscle cell—reliably releases more neurotransmitter, just as happens when muscle cells begin to malfunction in .

Davis has since built on this model of homeostatic plasticity by painstakingly knocking out Drosophila genes one by one and recording from presynaptic neurons to see which genes are necessary for the homeostatic response, because it is these genes that may be compromised in diseases affecting the process.

"So far we've tested about 1,000 genes this way, which has entailed close to 10,000 recordings," Davis said.

Using this technique Davis and colleagues observed at one point that knocking out a gene called multiplexin significantly hampered homeostatic plasticity in presynaptic neurons. But because that gene helps to form a structural protein known as collagen—which in humans is a component of ligaments, tendons, and cartilage—the finding wasn't immediately considered relevant to synaptic function.

The team learned that the multiplexin protein can be snipped by an enzyme to produce endostatin, so in experiments led by postdoctoral fellow Tingting Wang, PhD, they tested whether endostatin might play a role in homeostatic plasticity.

"Nobody picked up multiplexin to work on for a couple of years, because we didn't think a collagen could be that interesting," Davis said. "Then, when a new postdoc, Tingting Wang, came to the lab, we started thinking about it harder."

When the group genetically deleted the portion of Drosophila multiplexin that forms endostatin, presynaptic neurons behaved normally, but homeostatic plasticity was severely compromised when toxin was applied to postsynaptic muscle cells. On the opposite side of the coin, when the team overexpressed endostatin at Drosophila synapses lacking multiplexin, homeostasis was restored, whether endostatin was expressed in or presynaptic neurons.

The research team is unsure precisely how and where endostatin exerts its effects on homeostatic plasticity, but they believe that multiplexin is cleaved at the postsynaptic site to form endostatin, and that the endostatin signal is conveyed to the presynaptic neuron to alter its function. "Because so many people in the cancer world have studied endostatin, there is a great set of tools available" to study the protein, Davis said, so he expects his group to make rapid progress in addressing these questions.

"Despite its checkered history in cancer, we know endostatin is a signaling molecule and we know that the brain has a great deal of collagen—we just haven't known what it does, and we certainly don't know what endostatin's receptors in the brain might be." Davis said. "But it's pretty exciting to think about a new signaling molecule with a profound role in the stabilization of the function of neural circuits."

Explore further: Synaptic levels of clathrin protein are important for neuronal plasticity

Related Stories

Synaptic levels of clathrin protein are important for neuronal plasticity

June 19, 2014
Researchers of the group of cellular and molecular neurobiology of the Bellvitge Biomedical Research Institute (IDIBELL) and the University of Barcelona, led by researcher Artur Llobet, have shown that synaptic levels of ...

Amplifying communication between neurons

January 17, 2014
Neurons send signals to each other across small junctions called synapses. Some of these signals involve the flow of potassium, calcium and sodium ions through channel proteins that are embedded within the membranes of neurons. ...

Blame it on the astrocytes

July 11, 2014
In the brains of all vertebrates, information is transmitted through synapses, a mechanism that allows an electric or chemical signal to be passed from one brain cell to another. Chemical synapses, which are the most abundant ...

Loose coupling between calcium channels and sensors

February 6, 2014
In research published in this week's online edition of Science, postdoc Nicholas Vyleta and Professor Peter Jonas of the Institute of Science and Technology Austria uncover the existence of loose coupling between calcium ...

How the brain stabilizes its connections in order to learn better

July 17, 2014
Throughout our lives, our brains adapt to what we learn and memorise. The brain is indeed made up of complex networks of neurons and synapses that are constantly re-configured. However, in order for learning to leave a trace, ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.