Biology of love at first sight: Study explains the mechanism of "Cupid's arrow"

August 15, 2014

Waseda university researchers have identified certain chemicals in the brain which regulate downstream reproductive hormones of males.

A group led by Yasuko Tobari and Kazuyoshi Tsutsui, of Waseda University's Center for Advanced Biomedical Sciences (TWIns) , have published research outlining how the presence of the opposite sex triggers changes in animals' behavior.

It is known that the presence of a female causes rapid decreases in plasma testosterone levels in male Japanese quail, but little is known about the neural pathway linking social encounters to hormonal change.

The researchers identified certain chemicals in the brain which regulate downstream reproductive hormones of .

Major results:

- A female presence increases GnIH precursor mRNA expression in the and decreases luteinizing hormone (LH) concentration in the plasma of males;
- A female presence increases norepinephrine (NE) release in the hypothalamus of males;
- NE stimulates the release of GnIH from the hypothalamus in vitro and inhibits plasma LH secretion;
- NE neurons project to GnIH neurons that express NE (noradrenergic α2A subtype) receptor mRNA.

Since norepinephrine and GnIH are both found in humans, a similar neural mechanism may exist in us as well, meaning that the current research could help understand love at first sight.

Explore further: Study reveals one reason brain tumors are more common in men

More information: Yasuko Tobari, You Lee Son, Takayoshi Ubuka, Yoshihisa Hasegawa, and Kazuyoshi Tsutsui, "A new pathway mediating social effects on the endocrine system: Female presence acting via norepinephrine release stimulates gonadotropin-inhibitory hormone in the paraventricular nucleus and suppresses luteinizing hormone in quail", Journal of Neuroscience, July 17, 2014. www.jneurosci.org/content/34/29/9803

Related Stories

Study reveals one reason brain tumors are more common in men

August 1, 2014
New research at Washington University School of Medicine in St. Louis helps explain why brain tumors occur more often in males and frequently are more harmful than similar tumors in females. For example, glioblastomas, the ...

Testosterone in healthy men increases their brains' response to threat

August 11, 2014
Testosterone, a steroid hormone, is well known to contribute to aggressive behavior in males, but the neural circuits through which testosterone exerts these effects have not been clear.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

RobertKarlStonjek
not rated yet Aug 15, 2014
The authors have confused lust, the desire for sex, with love, the desire to incorporate something or someone into one's self identification.

Love at first sight also happens when a motoring enthusiast sees the perfect motor vehicle...this is unrelated to sex, obviously.
JVK
1 / 5 (2) Aug 16, 2014
In 1992, I first presented the model that linked the presence of other mammals to differences in GnRH and LH secretion via the sense of smell. In 1995 I published a book about that fact with co-author Robert T. Francoeur. In 1996, I co-authored a Hormones and Behavior review that linked what was known about molecular epigenetics to sex differences in cell types and behavior in species from microbes to man. Two award-winning publications then led to other publications and finally to my most recently published review: Nutrient-dependent/pheromone-controlled adaptive evolution: a model. http://www.ncbi.n...24693353

It integrates everything known about how changes in the nutrient-dependent microRNA/messenger RNA balance lead to differentiation of cell types and behavior in species from microbes to man via the conserved molecular mechanisms manifested in the nutrient-dependent pheromone-controlled regulation of GnRH and LH secretion in all mammals.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.