Clues to curbing obesity found in neuronal 'sweet spot'

August 1, 2014
Green POMC neurons were activated by leptin (red nuclei). Credit: Yale University

Preventing weight gain, obesity, and ultimately diabetes could be as simple as keeping a nuclear receptor from being activated in a small part of the brain, according to a new study by Yale School of Medicine researchers.

Published in the Aug. 1 issue of The Journal of Clinical Investigation (JCI), the study showed that when the researchers blocked the effects of the PPARgamma in a small number of in mice, the animals ate less and became resistant to a high-fat diet.

"These ate fat and sugar, and did not gain weight, while their control littermates gained weight on the same diet," said lead author Sabrina Diano, professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale School of Medicine. "We showed that the PPARgamma receptor in neurons that produce POMC could control responses to a high-fat diet without resulting in ."

POMC neurons are found in the hypothalamus and regulate food intake. When activated, these neurons cause a feeling of fullness and curb appetite. PPARgamma regulates the activation of these neurons.

Diano and her team studied transgenic mice that were genetically engineered to delete the PPARgamma receptor from POMC neurons. They wanted to see if they could prevent the obesity associated with a high-fat, high-sugar diet.

"When we blocked PPARgamma in these hypothalamic cells, we found an increased level of free radical formation in POMC neurons, and they were more active," said Diano, who is also professor of comparative medicine and neurobiology at Yale and director of the Reproductive Neurosciences Group.

The findings also have key implications in diabetes. PPARgamma is a target of thiazolidinedione (TZD), a class of drugs used to treat type 2 diabetes. They lower blood-glucose levels, but patients gain weight on these medications.

"Our study suggests that the increased weight gain in diabetic patients treated with TZD could be due to the effect of this drug in the brain, therefore, targeting peripheral PPARgamma to treat should be done by developing TZD compounds that can't penetrate the brain," said Diano. "We could keep the benefits of TZD without the side-effects of . Our next step is to test this theory in diabetes mouse models."

Explore further: Glucose 'control switch' in the brain key to both types of diabetes

More information: PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding, J Clin Invest. doi:10.1172/JCI76220

Related Stories

Glucose 'control switch' in the brain key to both types of diabetes

July 28, 2014
Researchers at Yale School of Medicine have pinpointed a mechanism in part of the brain that is key to sensing glucose levels in the blood, linking it to both type 1 and type 2 diabetes. The findings are published in the ...

Researchers investigating ways to improve type 2 diabetes treatments

June 23, 2014
A better understanding of how the transcription factor Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma) works is critical to find new ways to improve medications to treat type 2 diabetes. Drugs that activate PPARgamma, ...

Improved understanding of appetite-control proteins suggest treatment of obesity

March 26, 2014
The main cause of weight gain, and ultimately obesity, is an energy imbalance in the body triggered by increased food intake, often coupled with reduced energy expenditure. Two hormones called leptin and α-MSH (α-melanocyte-stimulating ...

Manipulating key protein in the brain holds potential against obesity and diabetes

July 25, 2014
A protein that controls when genes are switched on or off plays a key role in specific areas of the brain to regulate metabolism, UT Southwestern Medical Center researchers have found.

Leptin also influences brain cells that control appetite, study finds

June 1, 2014
Twenty years after the hormone leptin was found to regulate metabolism, appetite, and weight through brain cells called neurons, Yale School of Medicine researchers have found that the hormone also acts on other types of ...

Recommended for you

After a half-century of attempts, psilocybin has finally been synthesized in the lab

August 16, 2017
A team of researchers at Friedrich Schiller University Jena has figured how out to make psilocybin, the chemical responsible for creating hallucinations in people who consume the mushrooms that produce it naturally. In their ...

Using barcodes to trace cell development

August 16, 2017
How do the multiple different cell types in the blood develop? Scientists have been pursuing this question for a long time. According to the classical model, different developmental lines branch out like in a tree. The tree ...

The unexpected role of a well-known gene in creating blood

August 16, 2017
One of the first organ systems to form and function in the embryo is the cardiovascular system: in fact, this developmental process starts so early that scientists still have many unresolved questions on the origin of the ...

Researchers unlock clues to how cells move through the body

August 16, 2017
During its 120-day cycle the circulatory system transports red blood cells and nutrients throughout the human body. This system helps keep the body in balance and fight against infections and diseases by filtering old or ...

Eating habits affect skin's protection against sun

August 15, 2017
Sunbathers may want to avoid midnight snacks before catching some rays.

Chewing gum rapid test for inflammation

August 15, 2017
Dental implants occasionally entail complications. Six to 15 percent of patients develop an inflammatory response in the years after receiving a dental implant. This is caused by bacteria destroying the soft tissue and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.