Hijacking the brain's blood supply: Tumor discovery could aid treatment

August 12, 2014, University of Michigan Health System
Hijacking the brain's blood supply: Tumor discovery could aid treatment
This microscopic view of a section of mouse brain shows tiny clusters of tumor cells growing along existing brain blood vessels. Credit: University of Michigan Medical School

Dangerous brain tumors hijack the brain's existing blood supply throughout their progression, by growing only within narrow potential spaces between and along the brain's thousands of small blood vessels, new research shows for the first time.

The findings contradict the concept that brain tumors need to grow their own blood vessels to keep themselves growing – and help explain why drugs that aim to stop growth of the new blood vessels have failed in to extend the lives of patients with the worst brain tumors.

In fact, trying to block the growth of new blood vessels in the brain actually spurs malignant tumors called gliomas to grow faster and further, the research shows. On the hopeful side, the research suggests a new avenue for finding better drugs.

The discoveries come from a University of Michigan Medical School team studying tumors in rodents and humans, and advanced computer models, in collaboration with colleagues from Arizona State University. Published online in the journal Neoplasia, they'll be featured as the journal's cover article later this month.

Build or Borrow?

The vessels that the researchers studied feed the brain's constant need for energy and communication with the rest of the body. They have a special vessel wall structure that protects the brain from infection or other blood-borne dangers.

The new findings show that grow exclusively within the spaces around the vessels, close enough to draw their own energy and fuel their growth in the same way normal brain tissue does. Instead of spawning their own offshoots of these vessels as the tumor cells divide, they simply crowd out the normal cells in the immediate area and continue to fill the spaces between neighboring vessels.

This continued "autovascular" growth, as the researchers call it, was detected from the very beginning to the final stages of tumor progression. It runs directly counter to the theory of neoangiogenesis, or new blood vessel formation, that has driven the use of certain drugs to treat brain tumors such as glioblastoma multiforme and other cancers.

Last year, two clinical trials showed that glioblastoma patients taking an anti-angiogenic drug as part of treatment didn't survive any longer, and in some cases suffered more side effects than patients who didn't get the drug. Patients whose glioblastoma has returned after treatment also use the drug to reduce swelling.

The researchers caution that it's far too soon for patients to make medical decisions based on their findings.

But they note that further research on how new therapies will directly affect the tumor cells growing along blood vessels is already under way.

"The key question has been to determine how tumor-generating cells grow to form the macroscopic tumor mass that eventually kills the patients," says Pedro Lowenstein, M.D., Ph.D., the senior author of the new paper and a U-M Neuroscientist and Professor in the Departments of Neurosurgery and Cell & Developmental Biology. "We have shown that because of the very high density of endogenous vessels in the brain and central nervous system, the cells grow along those pre-existing vessels and eventually divide to fill the space between them, where the distance between any two vessels is very small."

"This iterative growth along vessels and into the space between means the tumor does not grow like a balloon requiring new vessels to grow into its expanding mass to rescue it," he continues, "but rather as an accumulation of local small masses which then coalesce into a large tumor."

Lowenstein notes that the angiogenesis theory of all tumor growth proposes that tumors more than one cubic millimeter in size need to attract their own blood vessels to survive. The theory emerged after research on non-vascularized tissue. But in the brain, a very large density of blood vessels already exists within that volume of brain tissue. And few tumor cells are sufficient to fill the space in between any two vessels.

The researchers confirmed this by examining tissue from mice and humans through special microscopes – and modeling their growth predictions with powerful computers. They also saw that tumors caused the cells of the ' walls to spread apart – allowing fluid to leak out. This "leakiness" results in the edema, or fluid-based swelling, often associated with brain tumors.

In the new study, the research team did show that, as expected, the anti-angiogenesis drug bevacizumab did stabilize the walls of the tiny vessels, reducing edema. This echoes the experience of human patients who use the drug for recurrent gliobastoma – many experience a reduction in cognitive symptoms and increased quality of life because less fluid builds up in their brains.

But almost perversely, the same drug designed to stop tumors may actually make it easier for them to grow. In the newly published research, mice with treated with the drug died at the same time as mice that didn't receive the drug for their tumors.

By tightening up the leaky vessel walls, the drug may make it easier for tumor cells to continue the autovascularization process, the researchers suggest. Lowenstein's research partner Maria Castro, Ph.D., a Professor of Neurosurgery and Cell and Developmental Biology, says "it's as if the tumor's growth along the "road" of a blood vessel had resulted in many potholes to form on the road's surface. But when the anti-angiogenesis drug is given, essentially patching the potholes, the tumor cells get a smoother road to grow along. It may even give them a highway across the divide between the brain's halves."

Armed with this new understanding, the research team has shifted its focus to finding ways to attack tumors from within the vessels they grow along. Working with U-M Chemistry Department and College of Pharmacy researchers, they're looking for ways to deliver molecular nano-sized drugs intravenously in the immediate area of the tumor. They're also studying in more detail how the tumor cell growth changes the structure of blood vessel walls and the surrounding tissue.

Explore further: Starving pancreatic cancer before it has a chance to feast

More information: Neoplasia, dx.doi.org/10.1016/j.neo.2014.06.003 , Vol. 16, No. 7, 2014

Related Stories

Starving pancreatic cancer before it has a chance to feast

June 23, 2014
(Medical Xpress)—Pancreatic cancer's low survival rate gives researchers from The University of Kansas Cancer Center even more reason to find a way to prevent and treat the hard-to-detect cancer. Drs. Snigdha Banerjee, ...

Brain tumor invasion along blood vessels may lead to new cancer treatments

July 8, 2014
Invading glioblastoma cells may hijack cerebral blood vessels during early stages of disease progression and damage the brain's protective barrier, a study in mice indicates. This finding could ultimately lead to new ways ...

Nano drug crosses blood-brain tumor barrier, targets brain tumor cells and blood vessels

July 17, 2013
(Phys.org) —An experimental drug in early development for aggressive brain tumors can cross the blood-brain tumor barrier and kill tumor cells and block the growth of tumor blood vessels, according to a recent study led ...

Labeling technique during noninvasive tumor imaging could predict response to chemotherapy

July 16, 2014
Being able to view tumor blood vessels without surgery or potent dyes can improve our understanding of the environment in which a tumor grows. Now, a team of researchers, including Chang-Tong Yang from the A*STAR Singapore ...

Study shows how brain tumor cells move and damage tissue, points to possible therapy

June 25, 2014
Researchers at the University of Alabama at Birmingham have shed new light on how cells called gliomas migrate in the brain and cause devastating tumors. The findings, published June 19, 2014 in Nature Communications, show ...

Malaria medicine chloroquine inhibits tumor growth and metastases

August 11, 2014
A recent study by investigators at VIB and KU Leuven has demonstrated that chloroquine also normalizes the abnormal blood vessels in tumors. This blood vessel normalization results in an increased barrier function on the ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.