Researchers show that two products of the gene DJ-1 can increase the survival of neurons against Parkinson's

August 1, 2014
Researchers show that two products of the gene DJ-1 can increase the survival of neurons against parkinson's
Inactivation of the DJ-1 gene results in mitochondrial dysfunction (left), which can be restored by glycolate or D-lactate (right). Active mitochondria are shown in red, DNA is shown in blue. Credit: MPI-CBG

Parkinson's disease affects neurons in the Substantia nigra brain region – their mitochondrial activity ceases and the cells die. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics show that supplying D-lactate or glycolate, two products of the gene DJ-1, can stop and even counteract this process: Adding the substances to cultured HeLa cells and to cells of the nematode C. elegans restored the activity of mitochondria and prevented the degeneration of neurons. They also showed that the two substances rescued the toxic effects of the weed killer Paraquat. Cells that had been treated with this herbicide, which is known to cause a Parkinson's like harm of mitochondria, recovered after the addition of the two substances. Both glycolic and D-lactic acids occur naturally in unripe fruits and certain kinds of yoghurt. Products with an enriched concentration of these substances could thus be a therapeutic route for a treatment of Parkinson's or for even preventing the onset of the disease.

Teymuras Kurzchalia and Tony Hyman both have labs at the Max Planck Institute of Molecular Cell Biology and Genetics with rather different research programs – but both happened to stumble upon the gene DJ-1 and joined forces. This gene, originally thought of as an oncogene, has been linked to Parkinson's disease since 2003. Recent studies showed that DJ-1 belongs to a novel glyxolase family. The major function of these genes is assumed to detoxify aggressive aldehyde by-products from mitochondrial metabolism. The Dresden research team now showed that the products of DJ-1, D-lactate and glycolate, are actually required to maintain the high mitochondrial potential and thus can prevent the degeneration of neurons implicated in Parkinson's disease.

Their experiments proved that both are lifesavers for neurons: Adding them to affected cells, in other words cells treated with the environmental poison Paraquat or with a down-regulated DJ-1, decreased the toxic effect of the herbicide, restored the activity of the and thus ensured the survival of the neurons.

"We do not yet understand how exactly D-lactate and glycolate achieve this curative and preventive effect, but the next step will be to investigate the molecular mechanism underlying this process", say Hyman and Kurzchalia. In addition to further molecular investigation, they also have more concrete plans for the future: As Kurzchalia says "we can develop a yoghurt enriched with D-lactate: It could serve as a protection against Parkinson's and is actually very tasty at the same time!" This is why the researchers have filed a patent for their finding.

Many diseases are associated with a decline in mitochondrial activity, not only Parkinson's. Thus, the researchers believe that the DJ1-products could have a general role in protecting cells from decline.

Explore further: Parkinson gene: Nerve growth factor halts mitochondrial degeneration

More information: Yusuke Toyoda, Cihan Erkut, Francisco Pan-Montojo, Sebastian Boland, Martin P. Stewart, Daniel J. Müller, Wolfgang Wurst, Anthony Hyman und Teymuras V. Kurzchalia. "Products of the Parkinson's-disease-related glyxolase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival." The Company of Biologists, 25 July 2014. DOI: 10.1242/bio.20149399

Related Stories

Parkinson gene: Nerve growth factor halts mitochondrial degeneration

January 30, 2014
(Medical Xpress)—Neurodegenerative diseases like Parkinson's disease involve the death of thousands of neurons in the brain. Nerve growth factors produced by the body, such as GDNF, promote the survival of the neurons; ...

Discovering Parkinson's cell mechanism

November 28, 2013
A new doctoral thesis from University of Stavanger suggests possible explanations of how a specific protein associated with Parkinson's disease (DJ-1) might be implicated in the onset of the disease.

Moving toward improved cell replacement therapy for Parkinson's disease

June 17, 2014
Parkinson's disease, which affects millions worldwide, results from neuron loss. Transplantation of fetal tissue to restore this loss has shown promise, but ethical concerns over acquiring this tissue limit its use.

Researchers identify new gene involved in Parkinson's disease

June 4, 2014
A team of UCLA researchers has identified a new gene involved in Parkinson's disease, a finding that may one day provide a target for a new drug to prevent and potentially even cure the debilitating neurological disorder.

Neurons, brain cancer cells require the same little-known protein for long-term survival

July 15, 2014
Researchers at the UNC School of Medicine have discovered that the protein PARC/CUL9 helps neurons and brain cancer cells override the biochemical mechanisms that lead to cell death in most other cells. In neurons, long-term ...

Why do neurons die in Parkinson's disease?

November 10, 2011
Current thinking about Parkinson's disease is that it's a disorder of mitochondria, the energy-producing organelles inside cells, causing neurons in the brain's substantia nigra to die or become impaired. A study from Children's ...

Recommended for you

Parkinson's is partly an autoimmune disease, study finds

June 21, 2017
Researchers have found the first direct evidence that autoimmunity—in which the immune system attacks the body's own tissues—plays a role in Parkinson's disease, the neurodegenerative movement disorder. The findings raise ...

Predicting cognitive deficits in people with Parkinson's disease

June 20, 2017
Parkinson's disease (PD) is commonly thought of as a movement disorder, but after years of living with PD approximately twenty five percent of patients also experience deficits in cognition that impair function. A newly developed ...

Pre-clinical study suggests Parkinson's could start in gut endocrine cells

June 15, 2017
Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating ...

Hi-res view of protein complex shows how it breaks up protein tangles

June 15, 2017
Misfolded proteins are the culprits behind amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and other neurodegenerative brain disorders. These distorted proteins are unable to perform their normal ...

CRISPR tech leads to new screening tool for Parkinson's disease

June 5, 2017
A team of researchers at the University of Central Florida is using breakthrough gene-editing technology to develop a new screening tool for Parkinson's disease, a debilitating degenerative disorder of the nervous system. ...

Infection with seasonal flu may increase risk of developing Parkinson's disease

May 30, 2017
Most cases of Parkinson's have no known cause, and researchers continue to debate and study possible factors that may contribute to the disease. Research reported in the journal npj Parkinson's Disease suggests that a certain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.