Researchers discover protein's ability to inhibit HIV release

August 25, 2014
This microscopic image of a human cell shows the accumulation of HIV-1 particles on the surface of the cell. University of Missouri researchers have found that a family of proteins that promotes virus entry into cells also has the ability to block the release of HIV and other viruses. Credit: University of Missouri Health System

A family of proteins that promotes virus entry into cells also has the ability to block the release of HIV and other viruses, University of Missouri researchers have found.

"This is a surprising finding that provides new insights into our understanding of not only HIV infection, but also that of Ebola and other viruses," said Shan-Lu Liu, M.D., Ph.D., associate professor in the MU School of Medicine's Department of Molecular Microbiology and Immunology.

The study was recently published in the Proceedings of the National Academy of Sciences. Liu, the corresponding author of the study, is also an investigator with the Christopher S. Bond Life Sciences Center at MU.

According to estimates from the Centers for Disease Control and Prevention, more than one million Americans currently are living with HIV infection, which can cause AIDS. AIDS, which stands for acquired immunodeficiency syndrome, is a condition characterized by progressive failure of the immune system. It is caused by the type 1 (HIV-1).

When HIV-1 or any virus infects a cell, it replicates and spreads to other cells. One type of cellular protein—T cell immunoglobulin and mucin domain, or TIM-1—has previously been shown to promote entry of some highly pathogenic viruses into host cells. Now, the MU researchers have found that the same protein possesses a unique ability to block the release of HIV-1 and Ebola virus.

"This study shows that TIM proteins keep viral particles from being released by the infected cell and instead keep them tethered to the cell surface," said Gordon Freeman, Ph.D., an associate professor of medicine with Harvard Medical School's Dana-Farber Cancer Institute, who was not affiliated with the study. "This is true for several important enveloped viruses including HIV and Ebola. We may be able to use this insight to slow the production of these viruses."

Under the supervision of Liu, Minghua Li, a graduate student in the MU Pathobiology Area Program, performed a series of experiments that revealed the 's ability to inhibit HIV-1 release, resulting in diminished viral production and replication.

HIV-1 attacks cells that are vital to the body's immune system, such as T cells. These play an important role in the body's response to infection, but HIV-1 disrupts the cells' ability to fight back against infection. When the virus enters a , it infects the cell and replicates, producing viral particles that spread to and infect other cells. The researchers found that as the viral particles attempt to bud from, or leave, the infected cell, the TIM-family proteins located on the surface of the cell can attach to lipids on the surface of the viral particle.

These lipids—known as phosphatidylserine (PS)—are normally present on the inner side of the cellular membrane but can be exposed to the outer side upon viral infection. When the TIM-family proteins come in contact with PS, the viral particle becomes attached to the host cell, keeping the particle from being released from the cell. Because TIM-family proteins and PS are present on the surface of the cell and the , the viral particles get stuck to one another, forming a network of viral particles that accumulate on the surface of the host cell, rather than being released to infect other cells.

By using molecular, biochemical and electron microscopic approaches, the researchers observed the TIM and PS interactions in human . The next step is for the researchers to study the biological significance of TIM-family proteins in animals and patients and to determine the fate of the infected cell once it accumulates a buildup of viral particles.

"We are not at the point to draw a conclusion as to whether this is a positive or a negative factor," Liu said. "However, this discovery furthers our ultimate goal of understanding the biology of TIM-family proteins and potentially developing applications for future antivirus therapies."

Explore further: Scientists believe they can identify which HIV strains cause infection

More information: "TIM-Family Proteins Inhibit HIV-1 Release," Proceedings of the National Academy of Sciences, www.pnas.org/content/early/201 … /1404851111.abstract

Related Stories

Scientists believe they can identify which HIV strains cause infection

July 21, 2014
(Medical Xpress)—HIV-infected people carry many different HIV viruses and all have distinct personalities—some much more vengeful and infectious than others.

Seeing through HIV's disguises: Researchers identify 25 human proteins that may be crucial for HIV-1 infection

February 27, 2013
Studying HIV-1, the most common and infectious HIV subtype, Johns Hopkins scientists have identified 25 human proteins "stolen" by the virus that may be critical to its ability to infect new cells. HIV-1 viruses capture many ...

New target to fight HIV infection identified

October 1, 2013
A mutant of an immune cell protein called ADAP (adhesion and degranulation-promoting adaptor protein) is able to block infection by HIV-1 (human immunodeficiency virus 1), new University of Cambridge research reveals. The ...

Scientists find the invisibility cloak that shields HIV-1 from the immune system

November 21, 2013
Of the two major types of HIV, only one, HIV-1, typically causes AIDS in infected people who don't receive treatment. A study published by Cell Press November 21st in the journal Immunity reveals how HIV-1 escapes detection ...

Clinical trial of herpes vaccine now enrolling patients

July 28, 2014
Creating a successful vaccine against two members of the family, the sexually transmitted herpes simplex virus 1 (HSV-1) and 2 (HSV-2), has proven to be challenging. A clinical trial being conducted by a branch of the National ...

Recommended for you

Paris spotlight on latest in AIDS science

July 21, 2017
Some 6,000 HIV experts gather in Paris from Sunday to report advances in AIDS science as fading hopes of finding a cure push research into new fields.

Scientists elicit broadly neutralizing antibodies to HIV in calves

July 20, 2017
Scientists supported by the National Institutes of Health have achieved a significant step forward, eliciting broadly neutralizing antibodies (bNAbs) to HIV by immunizing calves. The findings offer insights for HIV vaccine ...

Heart toxin reveals new insights into HIV-1 integration in T cell genome

July 20, 2017
Human immunodeficiency virus (HIV)-1 may have evolved to integrate its genetic material into certain immune-cell-activating genes in humans, according to new research published in PLOS Pathogens.

Scientists capture first high-resolution image of key HIV protein transitional state

July 13, 2017
A new, three-dimensional snapshot of HIV demonstrates the radical structural transformations that enable the virus to recognize and infect host cells, according to a new study led by scientists at The Scripps Research Institute ...

Barrier to autoimmune disease may open door to HIV, study suggests

July 11, 2017
Researchers from the University of Colorado School of Medicine have discovered that a process that protects the body from autoimmune disease also prevents the immune system from generating antibodies that can neutralize the ...

Team tests best delivery mode for potential HIV vaccine

June 20, 2017
For decades, HIV has successfully evaded all efforts to create an effective vaccine but researchers at The Scripps Research Institute (TSRI) and the La Jolla Institute for Allergy and Immunology (LJI) are steadily inching ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.