Spot on against autoimmune diseases and chronic inflammations

September 25, 2014, Technical University Munich
Based on structural data of the immunoproteasome researchers at Technische Universität München found an inhibitor, which selectively inactivates the immunoproteasome without influencing the constitutive proteasome. Credit: Prof. Michael Groll / TUM

Multiple sclerosis, type 1 diabetes and lupus are autoimmune diseases in which the immune cells can no longer differentiate between friend and foe and thus attack the body's own tissue. Here, the immunoproteasome, which supplies the immune system with information on processes within the cell, plays a central role. Chemists at Technische Universität München have now discovered a way to inhibit its functionality, thereby laying the foundation for possible optimizations of existing medications.

The functions as the body's police force, protecting it from intruders like bacteria and viruses. However, in order to ascertain what is happening in the cell it requires information on the foreign invaders. This task is assumed by so-called immunoproteasomes. These are cylindrical protein complexes that break down the protein structures of the intruders into fragments that can be used by the defense system.

"In like rheumatism, or as well as severe inflammations a significantly increased immunoproteasome concentration can be measured in the cells," explains Prof. Michael Groll at the TUM Chair of Biochemistry. "The deactivation of this degradation machinery suppresses the regeneration of immune signaling molecules, which, in turn, prevents an excessive immune reaction."

Subtle but significant differences

For some time now, scientists have been on the lookout for new active substances that block immunoproteasomes in a targeted manner without inhibiting the so-called constitutive proteasomes also present in cells. They break down defective or no longer required proteins and are thus responsible for cellular recycling. Notably cell death occurs, when both the constitutive proteasomes and the immunoproteasomes are inactivated.

In early 2012 the research team led by Groll fulfilled a prerequisite for designing specific active substances: They solved the crystal structure of the immunoproteasome, allowing them to spot the subtle but significant differences between the otherwise nearly identical structures.

Special mode of action

The potential drug that the researchers developed is based on the epoxyketon ONX 0914, an immunoproteasome inhibitor that is already used in clinical trials. The scientists replaced the epoxyketon with a sulfonylflouride group and modified its positioning on the inhibitor. The result was a new compound that selectively inhibits the immunoproteasome without influencing the constitutive proteasome.

First author Christian Dubiella explains what makes the discovered mechanism so special: "Normally inhibitors clog up the active center of the enzyme and thereby disable its functionality. The substance synthesized by us, however, attaches to its target, causing the active center to destroy itself, and then gets detached after successful inactivation." Especially the insights into the atomic mechanisms that were uncovered using X-ray structure analysis open the door to the custom-tailored development of immunoproteasome inhibitors. This may pave the road for a future generation of medications.

Explore further: Immunoproteasome crystal structure determined

More information: Selective Inhibition of the Immunoproteasome by Ligand-Induced Crosslinking of the Active Site, Christian Dubiella, Haissi Cui, Malte Gersch, Arwin J. Brouwer, Stephan A. Sieber, Achim Krüger, Rob M. J. Liskamp, Michael Groll, Angewandte Chemie, Early view, September 22, 2014 – DOI: 10.1002/anie.201406964

Related Stories

Immunoproteasome crystal structure determined

February 16, 2012
Like a shredder, the immunoproteasome cuts down proteins into peptides that are subsequently presented on the cellular surface. The immune system can distinguish between self and nonself peptides and selectively kills cells ...

Modified immune cells seek and destroy melanoma

June 24, 2013
In this issue of the Journal of Clinical Investigation, researchers led by Scott Pruitt at Duke University and Merck Research Laboratories report on a human clinical trial in which modified dendritic cells, a component of ...

Protein identified as important trigger of antiviral response

May 7, 2014
Cells have to protect themselves: against damage in their genetic material for one thing, but also against attack from the outside, by viruses for example. They do this by using different mechanisms: special proteins search ...

Genetic signal prevents immune cells from turning against the body

August 14, 2014
When faced with pathogens, the immune system summons a swarm of cells made up of soldiers and peacekeepers. The peacekeeping cells tell the soldier cells to halt fighting when invaders are cleared. Without this cease-fire ...

Discovery paves the way for a new generation of chemotherapies

September 9, 2014
A new mechanism to inhibit proteasomes, protein complexes that are a target for cancer therapy, is the topic of an article published in the journal Chemistry & Biology. The first author of the study is Daniela Trivella, researcher ...

Recommended for you

HIV vaccine protects non-human primates from infection

December 14, 2018
For more than 20 years, scientists at Scripps Research have chipped away at the challenges of designing an HIV vaccine. Now new research, published in Immunity, shows that their experimental vaccine strategy works in non-human ...

RNA processing and antiviral immunity

December 14, 2018
The RIG-I like receptors (RLRs) are intracellular enzyme sentries that detect viral infection and initiate a first line of antiviral defense. The cellular molecules that activate RLRs in vivo are not clear.

The 'greying' of T cells: Scientists pinpoint metabolic pathway behind age-related immunity loss

December 13, 2018
The elderly suffer more serious complications from infections and benefit less from vaccination than the general population. Scientists have long known that a weakened immune system is to blame but the exact mechanisms behind ...

Scientists create most accurate tool yet developed to predict asthma in young children

December 13, 2018
Scientists at Cincinnati Children's Hospital Medical Center have created and tested a decision tool that appears to be the most accurate, non-invasive method yet developed to predict asthma in young children.

New genetic study could lead to better treatment of severe asthma

December 12, 2018
The largest-ever genetic study of people with moderate-to-severe asthma has revealed new insights into the underlying causes of the disease which could help improve its diagnosis and treatment.

Researchers discover unique immune cell likely drives chronic inflammation

December 11, 2018
For the first time, researchers have identified that an immune cell subset called gamma delta T cells that may be causing and/or perpetuating the systemic inflammation found in normal aging in the general geriatric population ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.