Team finds that drug used for another disease slows progression of Parkinson's

October 8, 2014, University of California, Los Angeles

A new study from UCLA found that a drug being evaluated to treat an entirely different disorder helped slow the progression of Parkinson's disease in mice.

The study, published in the October edition of the journal Neurotherapeutics, found that the drug, AT2101, which has also been studied for Gaucher disease, improved , stopped inflammation in the brain and reduced levels of , a protein critically involved in Parkinson's.

Although the exact cause of Parkinson's is unknown, evidence points to an accumulation of alpha-synuclein, which has been found to be common to all people with the disorder. The protein is thought to destroy the neurons in the brain that make dopamine, a neurotransmitter that helps regulate a number of functions, including movement and coordination. Dopamine deficiency is associated with Parkinson's disease.

Gaucher disease is a in which the body cannot produce enough of an enzyme called β-glucocerebrosidase, or GCase. Researchers seeking genetic factors that increase people's risk for developing Parkinson's have determined that there may be a close relationship between Gaucher and Parkinson's due to a GCase gene. Mutation of this gene, which leads to decreased GCase activity in the brain, has been found to be a genetic risk factor for Parkinson's, although the majority of patients with Parkinson's do not carry mutations in the Gaucher gene.

"This is the first time a compound targeting Gaucher disease has been tested in a mouse model of Parkinson's disease and was shown to be effective," said the study's senior author, Marie-Francoise Chesselet, the Charles H. Markham Professor of Neurology at UCLA and director of the UCLA Center for the Study of Parkinson's Disease. "The promising findings in this study suggest that further investigation of this compound in Parkinson's disease is warranted."

In the study, the researchers used mice that were genetically engineered to make too much alpha-synuclein which, over time, led the animals to develop deficits similar to those observed in humans with Parkinson's. The researchers found that the mice's symptoms improved after they received AT2101 for four months.

The researchers also observed that AT2101 was effective in treating Parkinson's in mice even though they did not carry a mutant version of the Gaucher gene, suggesting that the compound may have a clinical effect in the broader Parkinson's population.

AT2101 is a first-generation "pharmacological chaperone"—a drug that can bind malfunctioning, mutated enzymes and lead them through the cell to their normal location, which allows the enzymes to carry on with their normal work. This was the first time that a pharmacological chaperone showed promise in a model of Parkinson's, according to Chesselet.

Parkinson's disease affects as many as 1 million Americans, and 60,000 new cases are diagnosed each year. The disorder continues to puzzle scientists. There is no cure and researchers have been unable to pin down its cause and no drug has been proven to stop the progression of the disease, which causes tremors, stiffness and other debilitating symptoms. Current Parkinson's treatments only address its symptoms.

Explore further: Rare genetic disorder provides unique insight into Parkinson's disease

Related Stories

Rare genetic disorder provides unique insight into Parkinson's disease

June 23, 2011
Massachusetts General Hospital investigators appear to have found the mechanism behind a previously reported link between the rare genetic condition Gaucher disease and the common neurodegenerative disorder Parkinson's disease. ...

Migraine in middle age linked to increased risk of Parkinson's, movement disorders later

September 17, 2014
A new study suggests that people who experience migraine in middle age may be more likely to develop Parkinson's disease, or other movement disorders later in life. Those who have migraine with aura may be at double the risk ...

Research targets early symptoms of Parkinson's

September 4, 2014
University of Adelaide neuroscience researchers are investigating markers for potential earlier diagnosis and treatment of Parkinson's disease.

Defective cellular waste removal explains why Gaucher patients often develop Parkinson's disease

May 23, 2013
Gaucher disease causes debilitating and sometimes fatal neurodegeneration in early childhood. Recent studies have uncovered a link between the mutations responsible for Gaucher disease and an increased risk of developing ...

How Parkinson's disease starts and spreads

April 16, 2012
Injection of a small amount of clumped protein triggers a cascade of events leading to a Parkinson's-like disease in mice, according to an article published online this week in the Journal of Experimental Medicine.

Research shows that a human protein may trigger the Parkinson's disease

April 9, 2014
A research led by the Research Institute Vall d'Hebron (VHIR), in which the University of Valencia participated, has shown that pathological forms of the α-synuclein protein present in deceased patients with Parkinson's ...

Recommended for you

New Parkinson's disease drug target revealed through study of fatty acids

December 4, 2018
The human brain is rich in lipids. Investigators studying Parkinson's disease (PD) have become increasingly interested in lipids since both molecular and genetic studies have pointed to the disruption of the balance of the ...

A toxin that travels from stomach to brain may trigger Parkinsonism

December 4, 2018
Combining low doses of a toxic herbicide with sugar-binding proteins called lectins may trigger Parkinsonism—symptoms typical of Parkinson's disease like body tremors and slowing of body motions—after the toxin travels ...

Experimental cancer drug shows promise for Parkinson's

December 3, 2018
The study, funded by Parkinson's UK, suggests that the drug, tasquinimod, which is not yet on the market, works by controlling genes that may cause Parkinson's. This happens when the drug interacts with a protein inside brain ...

Parkinson's therapy creates new brain circuits for motor function, study finds

November 28, 2018
Scientists have uncovered that an emerging gene therapy for Parkinson's disease creates new circuits in the brain associated with improved motor movement. These findings, published today in Science Translational Medicine ...

The puzzle of a mutated gene lurking behind many Parkinson's cases

November 15, 2018
Genetic mutations affecting a single gene play an outsized role in Parkinson's disease. The mutations are generally responsible for the mass die-off of a set of dopamine-secreting, or dopaminergic, nerve cells in the brain ...

Researchers find inhibiting one protein destroys toxic clumps seen in Parkinson's disease

November 14, 2018
A defining feature of Parkinson's disease is the clumps of alpha-synuclein protein that accumulate in the brain's motor control area, destroying dopamine-producing neurons. Natural processes can't clear these clusters, known ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.