Two-faced gene: SIRT6 prevents some cancers but promotes sun-induced skin cancer

October 15, 2014

A new study published in Cancer Research shows SIRT6—a protein known to inhibit the growth of liver and colon cancers—can promote the development of skin cancers by turning on an enzyme that increases inflammation, proliferation and survival of sun-damaged skin cells.

Previously considered protective, SIRT6 is part of a family of seven proteins called sirtuins that help regulate genomic stability and prevent some of the genetic flaws associated with aging. SIRT6 helps repair DNA damage, which can lead to cancer. This study, in the journal's October 15 issue, reveals its activity can vary from one tissue type to another.

"Although SIRT6 suppressed tumor growth in some cell types, we discovered that it encouraged cancer development in others, particularly in skin cells," said study author Yu-Ying He, PhD, assistant professor of medicine at the University of Chicago.

"We found more SIRT6 protein in sun-damaged squamous cell carcinoma cells than in healthy, sun-protected human skin," she said. "When we deleted SIRT6 from skin cells in mice, tumor development decreased."

To understand how SIRT6 contributed to the onset of the researchers looked at its effects on COX-2, an enzyme responsible for inflammation. COX-2 also promotes cell proliferation and survival, however, two hallmarks of . When the researchers increased expression of SIRT6, COX-2 became more abundant. When they inhibited SIRT6 expression, COX-2 levels decreased.

They also found that exposure to ultraviolet-B light, a cancer-causing component of sunshine, could trigger increased expression of SIRT6 in . This led to the production of COX-2, which contributed to the development of skin cancers.

"Our findings underscore a critical role for SIRT6 in the skin damage cause by ultraviolet light," He said, "This adds to our understanding of the mechanisms of skin carcinogenesis. It suggests that SIRT6 could provide a useful target for prevention. We are searching for safe and effective ways to inhibit it."

Explore further: A multi-function protein is key to stopping genomic parasites from 'jumping'

Related Stories

A multi-function protein is key to stopping genomic parasites from 'jumping'

September 23, 2014
Most organisms, including humans, have parasitic DNA fragments called "jumping genes" that insert themselves into DNA molecules, disrupting genetic instructions in the process. And that phenomenon can result in age-related ...

Scientists identify protein that improves DNA repair under stress

June 16, 2011
Cells in the human body are constantly being exposed to stress from environmental chemicals or errors in routine cellular processes. While stress can cause damage, it can also provide the stimulus for undoing the damage. ...

Protein controlling glucose metabolism also a tumor suppressor

December 6, 2012
A protein known to regulate how cells process glucose also appears to be a tumor suppressor, adding to the potential that therapies directed at cellular metabolism may help suppress tumor growth. In their report in the Dec. ...

Strict genomic partitioning by biological clock separates key metabolic functions

July 31, 2014
Much of the liver's metabolic function is governed by circadian rhythms – our own body clock – and UC Irvine researchers have now found two independent mechanisms by which this occurs.

Immune response linked to key enzyme

April 12, 2013
(Medical Xpress)—A previously unknown function of a family of enzymes familiar to biologists may contribute to scientists' understanding of signaling molecules involved in the body's immune response and could help in the ...

Levels of protein SIRT6 appear to impact lifespan of mice

February 23, 2012
(Medical Xpress) -- Researchers in Israel have found that genetically altering male mice to cause them to express more of the protein SIRT6 allowed them to live up to fifteen percent longer. Haim Cohen and colleagues at Bar-Ilan ...

Recommended for you

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

Proton therapy lowers treatment side effects in pediatric head and neck cancer patients

October 23, 2017
Pediatric patients with head and neck cancer can be treated with proton beam therapy (PBT) instead of traditional photon radiation, and it will result in similar outcomes with less impact on quality of life. Researchers from ...

New study shows how cells can be led down non-cancer path

October 23, 2017
As cells with a propensity for cancer break down food for energy, they reach a fork in the road: They can either continue energy production as healthy cells, or shift to the energy production profile of cancer cells. In a ...

Microbiologists contribute to possible new anti-TB treatment path

October 23, 2017
As part of the long effort to improve treatment of tuberculosis (TB), microbiologists led by Yasu Morita at the University of Massachusetts Amherst report that they have for the first time characterized a protein involved ...

Big Data shows how cancer interacts with its surroundings

October 23, 2017
By combining data from sources that at first seemed to be incompatible, UC San Francisco researchers have identified a molecular signature in tissue adjacent to tumors in eight of the most common cancers that suggests they ...

Symptom burden may increase hospital length of stay, readmission risk in advanced cancer

October 23, 2017
Hospitalized patients with advanced cancer who report more intense and numerous physical and psychological symptoms appear to be at risk for longer hospital stays and unplanned hospital readmissions. The report from a Massachusetts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.