Multiple models reveal new genetic links in autism

November 11, 2014
Multiple models reveal new genetic links in autism
Alysson Muotri, Ph.D. Credit: UC San Diego School of Medicine

With the help of mouse models, induced pluripotent stem cells (iPSCs) and the "tooth fairy," researchers at the University of California, San Diego School of Medicine have implicated a new gene in idiopathic or non-syndromic autism. The gene is associated with Rett syndrome, a syndromic form of autism, suggesting that different types of autism spectrum disorder (ASD) may share similar molecular pathways.

The findings are published in the Nov. 11, 2014 online issue of Molecular Psychiatry.

"I see this research as an example of what can be done for cases of non-syndromic autism, which lack a definitive group of identifying symptoms or characteristics," said principal investigator Alysson Muotri, PhD, associate professor in the UC San Diego departments of Pediatrics and Cellular and Molecular Medicine. "One can take advantage of genomics to map all mutant genes in the patient and then use their own iPSCs to measure the impact of these mutations in relevant cell types. Moreover, the study of brain cells derived from these iPSCs can reveal potential therapeutic drugs tailored to the individual. It is the rise of personalized medicine for mental/neurological disorders."

But to effectively exploit iPSCs as a diagnostic tool, Muotri said researchers "need to compare neurons derived from hundreds or thousands of other autistic individuals." Enter the "Tooth Fairy Project," in which parents are encouraged TO register for a "Fairy Tooth Kit," which involves sending researchers like Muotri a discarded baby tooth from their . Scientists extract dental pulp cells from the tooth and differentiate them into iPSC-derived neurons for study.

"There is an interesting story behind every single tooth that arrives in the lab," said Muotri.

The latest findings, in fact, are the result of Muotri's first tooth fairy donor. He and colleagues identified a de novo or new disruption in one of the two copies of the TRPC6 gene in iPSC-derived neurons of a non-syndromic autistic child. They confirmed with mouse models that mutations in TRPC6 resulted in altered neuronal development, morphology and function. They also noted that the damaging effects of reduced TRPC6 could be rectified with a treatment of hyperforin, a TRPC6-specific agonist that acts by stimulating the functional TRPC6 in neurons, suggesting a potential drug therapy for some ASD patients.

The researchers also found that MeCP2 levels affect TRPC6 expression. Mutations in the gene MeCP2, which encodes for a protein vital to the normal function of nerve cells, cause Rett syndrome, revealing common pathways among ASD.

"Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model," Muotri said. "This is the first study to use iPSC-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells."

Explore further: Stem cell model offers clues to cause of inherited ALS

Related Stories

Stem cell model offers clues to cause of inherited ALS

June 21, 2011
An international team of scientists led by researchers at the University of California, San Diego School of Medicine have used induced pluripotent stem cells (iPSCs) derived from patients with amyotrophic lateral sclerosis ...

Study links APC gene to learning and autistic-like disabilities

June 17, 2014
Autistic-like behaviors and decreased cognitive ability may be associated with disruption of the function of the Adenomatous Polyposis Coli (APC) gene. When Tufts researchers deleted the gene from select neurons in the developing ...

Gene variation links to autistic-like traits

October 28, 2014
Researchers have confirmed an association between a genetic mutation and a higher level of autistic-like traits in individuals.

Inducing insulin resistance: Human iPS cell model offers new look at key driver of type 2 diabetes

August 1, 2014
(Medical Xpress)—Harvard Medical School researchers at Joslin Diabetes Center have created the first induced pluripotent stem cells (iPSCs) that offer a human model of insulin resistance, a key driver of type 2 diabetes.

Recommended for you

New study rebuts the claim that antidepressants do not work

August 18, 2017
A theory that has gained considerable attention in international media, including Newsweek and the CBS broadcast 60 minutes, suggests that antidepressant drugs such as the SSRIs do not exert any actual antidepressant effect. ...

Should I stay or should I leave? Untangling what goes on when a relationship is being questioned

August 17, 2017
Knowing whether to stay in or leave a romantic relationship is often an agonizing experience and that ambivalence can have negative consequences for health and well-being.

Kids learn moral lessons more effectively from stories with humans than human-like animals

August 17, 2017
A study by researchers at the Ontario Institute for Studies in Education (OISE) at the University of Toronto found that four to six-year-olds shared more after listening to books with human characters than books with anthropomorphic ...

History of stress increases miscarriage risk, says new review

August 17, 2017
A history of exposure to psychological stress can increase the risk of miscarriage by upto 42 per cent, according to a new review.

Study finds children pay close attention to potentially threatening information, avoid eye contact when anxious

August 17, 2017
We spend a lot of time looking at the eyes of others for social cues – it helps us understand a person's emotions, and make decisions about how to respond to them. We also know that adults avoid eye contact when anxious. ...

Communicating in a foreign language takes emotion out of decision making

August 16, 2017
If you could save the lives of five people by pushing another bystander in front of a train to his death, would you do it? And should it make any difference if that choice is presented in a language you speak, but isn't your ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.