Researchers discover new signaling pathway in embryonic development

March 11, 2015, Max Delbrueck Center for Molecular Medicine (MDC) Berlin-Buch
Development of the placenta of a mouse The placental labyrinth forms the interface between the blood circulation of the embryo (bottom) and the mother (top). Two of its cell layers are immunofluorescence-stained in red and green, respectively. In the left image the labyrinth is normally developed. In the right image the labyrinth is compact and its branching is impaired, because the gene regulator Grhl2 was inactivated. Credit: Katharina Walentin/Copyright: MDC

During pregnancy, the mother supplies the fetus with nutrients and oxygen via the placenta. If placental development is impaired, this may lead to growth disorders of the embryo or to life-threatening diseases of the mother such as preeclampsia, a serious condition involving high blood pressure and increased urinary protein excretion. Now, Dr. Katharina Walentin and Professor Kai Schmidt-Ott of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have discovered a new molecular signaling pathway which regulates the development of the placenta. Perturbations of this pathway in mice cause developmental defects of the placenta.

The study focused on the gene regulator grainyhead-like 2 (GRHL2), which the research group has been investigating for a several years. As Dr. Walentin and Professor Schmidt-Ott have now shown, this regulator plays a key role in the development of the placenta. In a previous study, Professor Schmidt-Ott and his team discovered that it regulates the differentiation of epithelial cells - they line the cavities and surfaces of structures throughout the body - in the mouse embryo.

In the current study, the researchers noted that GRHL2 is very active in the healthy placenta, especially in trophoblast cells, which are responsible for the development of the labyrinth. This placental labyrinth forms the interface between the blood circulation of the embryo and the mother. It ensures the exchange of nutrients and oxygen as well as the removal of embryonic metabolic end products. The trophoblast cells branch out to form the labyrinth, and they are accompanied by fetal blood vessels. Thereby, a large interface is created to facilitate the exchange of metabolites between mother and fetus.

In mice, when the researchers inactivated the gene regulator GRHL2 in the fetal part of the placenta and in the embryo, the development of the labyrinth was severely disrupted. In particular, the branching of the trophoblast cells and the migration of the fetal blood vessels into the placenta were impaired. When the researchers inactivated the gene regulator only outside the placenta in the embryo, the labyrinth developed normally. Using genome-wide analyses, the MDC researchers found that GRHL2 regulates a defined gene program. Components of this program are critically involved in the of the placenta.

During their studies, which were funded by the German Research Foundation (DFG) and the Urological Research Foundation, the researchers additionally discovered that GRHL2 and its target genes also display activity in the . They hope that these findings could be significant for the understanding of developmental abnormalities of the and related pregnancy disorders in humans.

Explore further: Researchers identify cells involved in placenta development

More information: A Grhl2-dependent gene network controls trophoblast branching morphogenesis, Development 2015 142:1125-1136; DOI: 10.1242/dev.113829

Related Stories

Researchers identify cells involved in placenta development

November 27, 2013
(Medical Xpress)—Dr. Hanna Mikkola and researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have identified a specific type of cell and a related cell communication pathway that ...

Could trophoblasts be the immune cells of pregnancy?

December 18, 2014
Trophoblasts, cells that form an outer layer around a fertilized egg and develop into the major part of the placenta, have now been shown to respond to inflammatory danger signals, researchers from Norwegian University of ...

New theory may help demystify pregnancy-related condition

November 13, 2014
Preeclampsia, a late-pregnancy disorder that is characterized by high blood pressure and organ damage, may be caused by problems related to meeting the oxygen demands of the growing fetus, experts say in a new Anaesthesia ...

Stress during pregnancy can affect fetal development

January 25, 2015
Stress hormones in the mother can affect foetal development, according to a study published today in The Journal of Physiology.

Molecular signaling in early placenta formation gives clues to causes of pregnancy complications

April 16, 2013
Understanding the molecular control of placenta formation, the organ which enables fetal growth, is critical in diagnosing and treating related pregnancy complications. A group of scientists at the Chinese Academy of Sciences, ...

Study implicates marijuana use in pregnancy problems

September 12, 2012
New research indicates marijuana-like compounds called endocannabinoids alter genes and biological signals critical to the formation of a normal placenta during pregnancy and may contribute to pregnancy complications like ...

Recommended for you

Calorie restriction trial in humans suggests benefits for age-related disease

March 22, 2018
One of the first studies to explore the effects of calorie restriction on humans showed that cutting caloric intake by 15% for 2 years slowed aging and metabolism and protected against age-related disease. The study, which ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Gradual release of immunotherapy at site of tumor surgery prevents tumors from returning

March 21, 2018
A new study by Dana-Farber Cancer Institute scientists suggests it may be possible to prevent tumors from recurring and to eradicate metastatic growths by implanting a gel containing immunotherapy during surgical removal ...

Cold can activate body's 'good' fat at a cellular level, study finds

March 21, 2018
Lower temperatures can activate the body's 'good' fat formation at a cellular level, a new study led by academics at The University of Nottingham has found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.