Popular antioxidant likely ineffective, study finds

The popular dietary supplement ubiquinone, also known as Coenzyme Q10, is widely believed to function as an antioxidant, protecting cells against damage from free radicals. But a new study by scientists at McGill University finds that ubiquinone is not a crucial antioxidant and that consuming it is unlikely to provide any benefit.

The findings, by a team led by Professor Siegfried Hekimi in McGill's Department of Biology, are published today (March 6) in Nature Communications.

Ubiquinone is a lipid-like substance found naturally in all cells of the body. Cells need it to produce energy from nutrients and oxygen – a function performed by tiny structures, known as , within cells. Because it was also thought to function as an antioxidant, ubiquinone has been recommended for a variety of ills and as an anti-aging supplement; global sales of the substance are estimated to amount to hundreds of millions of dollars a year.

"Our findings show that one of the major anti-aging used by people can't possibly act as previously believed," Hekimi says. "Dietary supplements cost a lot of money to patients throughout the world – money that would be better spent on healthy food. What's more, the hope for a quick fix makes people less motivated to undertake appropriate lifestyle changes."

In order to study how energy metabolism affects aging, the McGill researchers created the first strain of mice in which scientists are able to gradually eliminate ubiquinone – and then to restore it at will to normal levels. Because of ubiquinone's role in energy production, loss of the substance in the mice led to severe sickness and early death. But the researchers were surprised to find no signs of elevated oxidative damage to cell membranes or DNA from , the sometimes-harmful molecules created by the oxygen chemistry during metabolism. The team also determined that this unexpected lack of damage didn't stem from deployment of some other antioxidant strategies by the animals.

At the same time, the research yielded new insights into the importance of ubiquinone in helping mitochondria produce energy. "Many patients are sick because their mitochondria don't work properly, including because they don't contain enough ubiquinone," Hekimi says. "We'll be using the results of this study to devise ways, and possibly new drugs, to boost ubiquinone levels or help residual ubiquinone to function effectively in defective mitochondria." To that end, his research team recently received a grant from MitoCanada, a charity that seeks to help patients with mitochondrial diseases.

Explore further

Novel antioxidant makes old arteries seem young again, study finds

More information: "Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis", Ying Wang, Daniella Oxer & Siegfried Hekimi, Nature Communications, published online March 6, 2015. DOI: 10.1038/ncomms7393
Journal information: Nature Communications

Provided by McGill University
Citation: Popular antioxidant likely ineffective, study finds (2015, March 6) retrieved 18 July 2019 from https://medicalxpress.com/news/2015-03-popular-antioxidant-ineffective.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Mar 06, 2015
"But a new study by scientists at McGill University finds that ubiquinone is .... is unlikely to provide any benefit." This is a very strange press release. The research reported seemed clear: (1) ubiquinone does not provide anti-oxidant protection; and (2) animals lacking ubiquinone got sick and died. From this, the writer conjures up the idea that people should not supplement with ubiquinone. This seems contradicted by the writers acknowledgement that people with ubiquinone metabolism problems suffer seriously from mitocondrial diseases -- loss of cellular energy. The science seems clear and interesting, the press release seems to frame it in an ill-conceived prior agenda about the evils of supplements.

Mar 06, 2015
MitoCanada does not seem active; online has lastest blog (and that inacessible) June 2014

Mar 06, 2015
Ubiquinone != Ubiquinol. The latter is what any studies observing the effects of supplementation should use. It was shown in 2014 by https://www.ncbi....24979483 that "the enhanced bioaccessibility and bioavailability of ubiquinol compared to ubiquinone results from reduced coenzyme being more efficiently incorporated into mixed micelles during digestion and its greater uptake and basolateral secretion in a glutathione-dependent mechanism."

Mar 06, 2015
MitoQ improves upon and is better even than ubiquinol. See the other article from today: http://medicalxpr...ung.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more