More power to the mitochondria: Cells' energy plant also plays key role in stem cell development

April 27, 2015, New York University School of Medicine
Mitochondria. Credit: Wikipedia commons

Researchers at NYU Langone Medical Center have discovered that mitochondria, the major energy source for most cells, also play an important role in stem cell development—a purpose notably distinct from the tiny organelle's traditional job as the cell's main source of the adenosine triphosphate (ATP) energy needed for routine cell metabolism.

Specifically, the NYU Langone team found that blocking the action of the mitochondrial ATP synthase enzyme stalled egg cell development from stem cells in experiments in fruit flies, one of the main organisms used to study .

In further experiments with the flies, the research team found that ATP synthase was essential to normal stem cell development, directly controlling the growth and maintenance of the inner membranes inside mitochondria, called cristae, as the cells continue to divide and form the specific cell components that make up an egg, or female germ cell.

The study findings are to be published in the journal Nature Cell Biology online April 27.

"Our study results showed that ATP synthase has a new function during stem cell development and specifically for making an egg that is independent of its role to make ATP," says senior study investigator and cell biologist Ruth Lehmann, PhD, the Laura and Isaac Perlmutter Professor of Cell Biology at NYU Langone and a Howard Hughes Medical Institute investigator.

Moreover, Lehmann says that because ATP synthase energy production is common among all that have a nucleus, it is highly likely that its structural role in early mitochondrial development is the same for all mammals, including humans. Indeed, Lehmann, who also serves as director of NYU Langone's Skirball Institute of Biomolecular Medicine and chair of its Department of Cell Biology, notes that earlier research reports described damaged or immature cristae in several animal species with compromised ATP synthase, but until now, no explanation or evidence existed to link this process to stem cell development.

The discovery is remarkable, Lehmann says, not just for outlining a new role for the mitochondria beyond energy production, but also because it appears that ATP synthase's role in stem is independent of its power-generating role, first described in the 1960s and subject of the 1997 Nobel Prize in Chemistry.

Experiments by Lehmann and her colleagues found that when any one of 13 key proteins tied to ATP synthase were blocked, egg development was disrupted or stalled. Blocking other enzymes involved in ATP production prior to the work of ATP synthase, however, did not damage egg development.

"Our team plans further investigations into precisely how ATP synthase biologically controls cristae development, and whether other developmental roles are influenced by mitochondria," says Lehmann.

For the study, which took two years to complete, researchers screened more than 8,000 genes known to be active in the developing fruit fly's germline, or usually predestined to become either egg or sperm. Only ATP synthase stood out and was active, even when other enzymes active in ATP production were turned off.

Explore further: Scientists find potential target for treating mitochondrial disorders

More information: ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation, Nature Cell Biology,

Related Stories

Scientists find potential target for treating mitochondrial disorders

March 27, 2014
Mitochondria, long known as "cellular power plants" for their generation of the key energy source adenosine triphosphate (ATP), are essential for proper cellular functions. Mitochondrial defects are often observed in a variety ...

Mapping energy metabolism of growing nerve cells to better understand neuronal disorders

April 10, 2015
Scientists from Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) in Japan have have discovered how nerve cells adjust to low energy environments during the brain's growth process. Their study, published ...

Workings of molecular motor revealed

October 24, 2011
(Medical Xpress) -- The structure and function of a ‘molecular motor’ critical to the functioning of human organs and, when malfunctioning, implicated in cancer, kidney failure, and osteoporosis, has been revealed ...

New study upends current theories of how mitochondria began

October 16, 2014
Parasitic bacteria were the first cousins of the mitochondria that power cells in animals and plants – and first acted as energy parasites in those cells before becoming beneficial, according to a new University of Virginia ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 27, 2015
Life is not about us. We are just carriers of the real life on Earth: The Mitochondria.

It is not my idea, but a good one,.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.