Protein in metabolic reprogramming restrains senescent cells from becoming cancerous

April 30, 2015, The Wistar Institute
Protein in metabolic reprogramming restrains senescent cells from becoming cancerous
Shown on the left is an ATM positive cell that has undergone senescence (depicted by blue color). On the right are cells with low ATM that are not senescent due to a cancer-like change in metabolism. Credit: The Wistar Institute

In recent years, research has shown that cancerous cells have a different metabolism—essential chemical and nutritional changes needed for supporting the unlimited growth observed in cancer—than normal cells. Now, scientists at The Wistar Institute have identified a way that cells can reprogram their metabolism to overcome a tumor-suppressing mechanism known as senescence, solidifying the notion that altered metabolism is a hallmark of cancer progression.

The findings were published online by the journal Cell Reports.

Normal become senescent as an automatic way to halt growth in the presence of potential -causing changes. In this study, researchers found that metabolic reprogramming allows for the proliferation of cells that should have become senescent, and these proliferative cells have the potential to lead to tumor formation.

"Senescence is an important suppressor of tumorigenesis," said Katherine Aird, Ph.D., a postdoctoral fellow in the laboratory of Rugang Zhang, Ph.D. and lead author of the study. "When the cell finds a way to get around senescence, like the mechanism we described, there is the potential for cells to become cancerous."

At the center of these findings is a protein kinase called mutated, or ATM. ATM is mutated in approximately 1 in 50,000 people, and these patients have a 25% lifetime incidence of cancer. In this study, researchers found that when ATM is suppressed, it both inhibits p53—which is highly involved in tumor suppressive metabolism—and increases the expression of the oncogene c-MYC, a gene known to play an important role in tumor-promoting metabolism. Essentially, the loss of ATM reprograms a cell's metabolism in such a way that it may promote cancer. This could explain why many cancers have lost ATM and provide possible additional insight into why people with ATM mutations have a higher than normal incidence of cancer.

"A better understanding of the basic regulatory processes that control cancer metabolism is critical for eventually targeting this process for the development of novel cancer therapeutics," said Rugang Zhang Ph.D., associate professor in Wistar's Gene Expression and Regulation Program and corresponding author of the study. "With this study, we have found that specific metabolic changes can overcome senescence. We may be able to exploit this for cancer therapy by reversing these senescence-overcoming metabolic changes."

"This is an extremely exciting and timely set of observations," said Dario C. Altieri, M.D., President and CEO of the Wistar Institute and director of The Wistar Institute Cancer Center. "The work that Katherine has just completed gives a completely novel perspective on how tumors can bypass a fundamental barrier that protects us against cancer. At the same time, the results point the way on how it may be possible to target the unique of tumor cells for novel therapies."

Explore further: How NORE1A acts as a barrier to tumor growth

Related Stories

How NORE1A acts as a barrier to tumor growth

March 16, 2015
Researchers reveal how cells protect themselves from a protein that is a key driver of cancer. The study appears in The Journal of Cell Biology.

Shutting down DNA construction: How senescence halts growth of potential cancers

April 4, 2013
Researchers from The Wistar Institute explain a new molecular mechanism behind the phenomenon of oncogene-induced senescence. By depriving the cell of the ability to make new nucleotides—the building blocks of DNA molecules—cells ...

New therapeutic strategy discovered for ovarian cancer

February 16, 2015
Ovarian cancer is the deadliest of all cancers affecting the female reproductive system with very few effective treatments available. Prognosis is even worse among patients with certain subtypes of the disease. Now, researchers ...

Cell senescence does not stop tumor growth

January 19, 2012
Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Tipping the balance between senescence and proliferation

November 15, 2013
An arrest in cell proliferation, also referred to as cellular senescence, occurs as a natural result of aging and in response to cellular stress. Senescent cells accumulate with age and are associated with many aging phenotypes, ...

Study points to potential new lung cancer therapy

April 20, 2015
New findings about regulation of PD-L1, a protein that allows cancer to evade the immune system, has shown therapeutic promise for several cancers, including the most common form of lung cancer.

Recommended for you

Researcher: Big data, networks identify cell signaling pathways in lung cancer

May 22, 2018
A team of scientists led by University of Montana cell biologist Mark Grimes has identified networks inside lung cancer cells that will help understand this cancer and fight it with drug treatments.

Scientists discover how breast cancer hibernates: study

May 22, 2018
Scientists have identified the mechanism that allows breast cancer cells to lie dormant in other parts of the body only to reemerge years later with lethal force, according to a study published Tuesday.

Downward-facing mouse: Stretching reduces tumor growth in mouse model of breast cancer

May 22, 2018
Many cancer patients seek out gentle, movement-based stretching techniques such as yoga, tai chi and qigong, but does stretching have an effect on cancer? While many animal studies have attempted to quantify the effects of ...

Resetting the epigenetic balance for cancer therapy

May 22, 2018
Though mutations in a gene called MLL3 are common across many types of cancers, their relationship to the development of the disease has been unclear. Now, a Northwestern Medicine study has identified an epigenetic imbalance ...

Compound in citrus oil could reduce dry mouth in head, neck cancer patients

May 21, 2018
A compound found in citrus oils could help alleviate dry mouth caused by radiation therapy in head and neck cancer patients, according to a new study by researchers at the Stanford University School of Medicine.

Ice cream funds research showing new strategy against thyroid cancer

May 21, 2018
Anaplastic thyroid cancer is almost uniformly fatal, with an average lifespan of about 5 months after diagnosis. And standard treatment for the condition includes 7 weeks of radiation, often along with chemotherapy.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.