Protein in metabolic reprogramming restrains senescent cells from becoming cancerous

April 30, 2015, The Wistar Institute
Protein in metabolic reprogramming restrains senescent cells from becoming cancerous
Shown on the left is an ATM positive cell that has undergone senescence (depicted by blue color). On the right are cells with low ATM that are not senescent due to a cancer-like change in metabolism. Credit: The Wistar Institute

In recent years, research has shown that cancerous cells have a different metabolism—essential chemical and nutritional changes needed for supporting the unlimited growth observed in cancer—than normal cells. Now, scientists at The Wistar Institute have identified a way that cells can reprogram their metabolism to overcome a tumor-suppressing mechanism known as senescence, solidifying the notion that altered metabolism is a hallmark of cancer progression.

The findings were published online by the journal Cell Reports.

Normal become senescent as an automatic way to halt growth in the presence of potential -causing changes. In this study, researchers found that metabolic reprogramming allows for the proliferation of cells that should have become senescent, and these proliferative cells have the potential to lead to tumor formation.

"Senescence is an important suppressor of tumorigenesis," said Katherine Aird, Ph.D., a postdoctoral fellow in the laboratory of Rugang Zhang, Ph.D. and lead author of the study. "When the cell finds a way to get around senescence, like the mechanism we described, there is the potential for cells to become cancerous."

At the center of these findings is a protein kinase called mutated, or ATM. ATM is mutated in approximately 1 in 50,000 people, and these patients have a 25% lifetime incidence of cancer. In this study, researchers found that when ATM is suppressed, it both inhibits p53—which is highly involved in tumor suppressive metabolism—and increases the expression of the oncogene c-MYC, a gene known to play an important role in tumor-promoting metabolism. Essentially, the loss of ATM reprograms a cell's metabolism in such a way that it may promote cancer. This could explain why many cancers have lost ATM and provide possible additional insight into why people with ATM mutations have a higher than normal incidence of cancer.

"A better understanding of the basic regulatory processes that control cancer metabolism is critical for eventually targeting this process for the development of novel cancer therapeutics," said Rugang Zhang Ph.D., associate professor in Wistar's Gene Expression and Regulation Program and corresponding author of the study. "With this study, we have found that specific metabolic changes can overcome senescence. We may be able to exploit this for cancer therapy by reversing these senescence-overcoming metabolic changes."

"This is an extremely exciting and timely set of observations," said Dario C. Altieri, M.D., President and CEO of the Wistar Institute and director of The Wistar Institute Cancer Center. "The work that Katherine has just completed gives a completely novel perspective on how tumors can bypass a fundamental barrier that protects us against cancer. At the same time, the results point the way on how it may be possible to target the unique of tumor cells for novel therapies."

Explore further: How NORE1A acts as a barrier to tumor growth

Related Stories

How NORE1A acts as a barrier to tumor growth

March 16, 2015
Researchers reveal how cells protect themselves from a protein that is a key driver of cancer. The study appears in The Journal of Cell Biology.

Shutting down DNA construction: How senescence halts growth of potential cancers

April 4, 2013
Researchers from The Wistar Institute explain a new molecular mechanism behind the phenomenon of oncogene-induced senescence. By depriving the cell of the ability to make new nucleotides—the building blocks of DNA molecules—cells ...

New therapeutic strategy discovered for ovarian cancer

February 16, 2015
Ovarian cancer is the deadliest of all cancers affecting the female reproductive system with very few effective treatments available. Prognosis is even worse among patients with certain subtypes of the disease. Now, researchers ...

Cell senescence does not stop tumor growth

January 19, 2012
Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Tipping the balance between senescence and proliferation

November 15, 2013
An arrest in cell proliferation, also referred to as cellular senescence, occurs as a natural result of aging and in response to cellular stress. Senescent cells accumulate with age and are associated with many aging phenotypes, ...

Study points to potential new lung cancer therapy

April 20, 2015
New findings about regulation of PD-L1, a protein that allows cancer to evade the immune system, has shown therapeutic promise for several cancers, including the most common form of lung cancer.

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.