Mutations in two genes linked to familial pulmonary fibrosis and telomere shortening

May 4, 2015
Dr. Christine Kim Garcia, Associate Professor of Internal Medicine and with the Eugene McDermott Center for Human Growth and Development. Credit: UT Southwestern Medical Center

Researchers at UT Southwestern Medical Center have identified mutations in two genes that cause a fatal lung scarring disease known as familial pulmonary fibrosis.

Researchers also determined that these mutations cause excessive shortening of the ends of chromosomes, known as telomeres. Telomeres are repetitive sequences of DNA that protect the ends of chromosomes from deteriorating. They are sometimes compared to the plastic ends of shoelaces, which protect shoelaces from fraying.

Together, these genes—PARN and RTEL1—explain about 7 percent of familial and strengthen the link between and telomere dysfunction, according to the study, done in conjunction with the Yale Center for Genome Analysis, and which appears online in Nature Genetics.

"Although RTEL1 had been previously linked to telomere biology, our finding that PARN was involved in telomere regulation and human disease was completely unexpected," said senior author Dr. Christine Kim Garcia, Associate Professor of Internal Medicine and with the Eugene McDermott Center for Human Growth and Development.

About 50,000 people in the United States annually develop , a progressive disease that principally affects the elderly, according to the Pulmonary Fibrosis Foundation. Approximately one in 20 people have a close relative with the disease, in which case they are considered to have familial pulmonary fibrosis. Without a lung transplant, pulmonary fibrosis patients typically die within three years after diagnosis.

The genetic research was made possible by UT Southwestern's highly active lung transplant program, said Dr. Garcia, who holds the Kern and Marnie Wildenthal President's Research Council Professorship in Medical Science.

"My clinical colleagues are attuned to asking patients about their family history and letting patients know that we have an active research program investigating the inherited form of this disease," said Dr. Garcia, whose lab focuses on defining the genetic underpinnings of adult-onset lung disease.

The research team identified 99 families that had the inherited form of the disease, but did not have mutations in one of the previously identified genes. Using a technique known as exome sequencing, the researchers identified mutations in PARN and RTEL1 in 12 percent of these families.

"There were statistically more mutations found in these two genes than you would expect by chance," Dr. Garcia said.

The researchers used a biological assay technique called quantitative PCR (or real-time polymerase chain reaction) to measure telomere lengths in these patients.

"We found that the mean, age-adjusted of all rare variant carriers was significantly shorter than normal controls," said the study's first author, Dr. Bridget Stuart, Assistant Professor of Pediatrics and with the Eugene McDermott Center for Human Growth and Development. "This finding implicates both genes in telomere maintenance as well as development of pulmonary fibrosis."

The new findings add to previous research led by Dr. Garcia that had identified mutations in three other genes as being linked to familial pulmonary fibrosis. Two of those genes, TERT and TERC, like PARN and RTEL1, affect telomere length. The third, SFTPA2, affects a protein expressed only in the fluid that bathes the lung's epithelial cells. Altogether, mutations in the five identified account for about 25 percent of all cases of familial pulmonary fibrosis.

"Our ultimate goal is to gain a full understanding of what causes the genetic form of this disease so that effective medications can be developed," Dr. Garcia said.

Explore further: New research finds link between telomere length and lung disease

More information: Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening, DOI: 10.1038/ng.3278

Related Stories

New research finds link between telomere length and lung disease

February 4, 2015
Brigham Young University biologist Jonathan Alder has a startling secret he doesn't freely share: he knows when most of us are going to die.

Mutations linked to repair of chromosome ends may make emphysema more likely in smokers

January 14, 2015
Mutations in a gene that helps repair damaged chromosome ends may make smokers—especially female smokers—more susceptible to emphysema, according to results of a new study led by Johns Hopkins Kimmel Cancer Center researchers.

Protein molecule may improve survival in deadly lung disease

May 6, 2014
Researchers at the University of Illinois at Chicago College of Medicine have discovered a protein molecule that seems to slow the progression of pulmonary fibrosis, a progressive lung disease that is often fatal three to ...

Scientists uncover mechanism that controls the fitness of cells, impacting aging and disease

November 14, 2014
A novel looping mechanism that involves the end caps of DNA may help explain the aging of cells and how they initiate and transmit disease, according to new research from UT Southwestern Medical Center cell biologists.

Reversing the effects of pulmonary fibrosis

September 22, 2014
Yale University researchers are studying a potential new treatment that reverses the effects of pulmonary fibrosis, a respiratory disease in which scars develop in the lungs and severely hamper breathing.

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.