Neurons in rat brains responsible for monitoring speed identified

July 16, 2015 by Bob Yirka report
Neurons in rat brains responsible for monitoring speed identified
Bottomless car. Credit: Nature (2015) doi:10.1038/nature14622

(Medical Xpress)—A team of researchers working at the Norwegian University of Science and Technology has isolated the neurons in the rat brain that are responsible for monitoring speed as rats run, walk or stop moving around. In their paper published in the journal Nature, the team describes how they found the neurons and what it might mean for other mammalian brains.

Prior work by John O'Keefe back in the 70's led to the discovery of the neurons that monitor "place" and have thus been named place —they fire when a rat recognizes a place it has been before. Later work by some of the same on this latest effort led to the discovery of responsible for creating a map in the brain that allows a rat to know where it is in the world. In this new effort, the researchers have built on such prior work and have now found the cells in the rat brain that are involved when a rat moves, monitoring both velocity and angle relative to a starting point.

To make this discovery the researchers created a rat sized car that allows for monitoring neural activity while the rat uses its feet and legs to move about. The team describes it as similar to Fred Flintstone's car, of comic fame. Twenty six rats had probes placed into their brains before being put in the ratmobile. The probes (which were so sensitive they could capture single nerve activity) were inserted in a part of the brain known as the entorhinal cortex—the same general area where grid cells had been identified previously. The rats were then incited to move at different rates of speed as the team members watched. They found that a group of neurons fired in step with the speed at which the rat was moving.

The team conducted over 2,000 rat-moving sessions while studying a group of 2,497 cells, 15 percent of which turned out to be those they were looking for—the ones that would fire in ways that mimicked the speed at which the traveled. So clear was the response, the team reports, that they were able to accurately predict how fast a rat was moving by watching how fast its were firing.

The next step, the team suggests is tying together place, grid and cells to better understand how the rat brain works as a whole in monitoring its sense of location.

Explore further: Virtual reality sheds new light on how we navigate in the dark

More information: Speed cells in the medial entorhinal cortex, Nature (2015) DOI: 10.1038/nature14622

Abstract
Grid cells in the medial entorhinal cortex have spatial firing fields that repeat periodically in a hexagonal pattern. When animals move, activity is translated between grid cells in accordance with the animal's displacement in the environment. For this translation to occur, grid cells must have continuous access to information about instantaneous running speed. However, a powerful entorhinal speed signal has not been identified. Here we show that running speed is represented in the firing rate of a ubiquitous but functionally dedicated population of entorhinal neurons distinct from other cell populations of the local circuit, such as grid, head-direction and border cells. These 'speed cells' are characterized by a context-invariant positive, linear response to running speed, and share with grid cells a prospective bias of ~50–80 ms. Our observations point to speed cells as a key component of the dynamic representation of self-location in the medial entorhinal cortex.

Related Stories

Virtual reality sheds new light on how we navigate in the dark

June 11, 2015
As everyone who has gotten up in the middle of the night to go to the bathroom knows, the brain maintains a sense of place and a basic ability to navigate that is independent of external clues from the eyes, ears and other ...

What rats in a maze can teach us about our sense of direction

May 18, 2015
London's taxi drivers have to pass an exam in which they are asked to name the shortest route between any two places within six miles of Charing Cross – an area with more than 60,000 roads. We know from brain scans that ...

Researchers find the missing part of brain's 'internal compass'

January 5, 2015
If you have taken a walk and would like to return home you need to have an idea of where you are in relation to your destination. To do this, you need to know which way you are facing and also in which direction home lies. ...

Scientists can see which cells communicate with each other in the brain, by flipping a neural light switch

April 4, 2013
There are cells in your brain that recognize very specific places, and have that as one of their main jobs. These cells, called place cells, are found in an area behind your temple called the hippocampus. While these cells ...

Study reveals Internet-style 'local area networks' in cerebral cortex of rats

April 6, 2015
Researchers sketching out a wiring diagram for rat brains—a field known as "connectomics"—have discovered that its structure is organized like the Internet.

Recommended for you

How a seahorse-shaped brain structure may help us recognize others

December 8, 2017
How do we recognize others? How do we know friend from foe, threat from reward? How does the brain compute the multitude of cues telling us that Susan is not Erica even though they look alike? The complexity of social interactions—human ...

Brain networks that help babies learn to walk ID'd

December 8, 2017
Scientists have identified brain networks involved in a baby's learning to walk—a discovery that eventually may help predict whether infants are at risk for autism.

Why we can't always stop what we've started

December 7, 2017
When we try to stop a body movement at the last second, perhaps to keep ourselves from stepping on what we just realized was ice, we can't always do it—and Johns Hopkins University neuroscientists have figured out why.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

Researchers launch atlas of developing human brain

December 7, 2017
The human brain has been called the most complex object in the cosmos, with 86 billion intricately interconnected neurons and an equivalent number of supportive glial cells. One of science's greatest mysteries is how an organ ...

How we learn: Mastering the features around you rather than learning about individual objects

December 7, 2017
A Dartmouth-led study on how we learn finds that humans tend to rely on learning about the features of an object, rather than on the individual object itself.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.