Scientists grow human serotonin neurons in petri dish

August 6, 2015 by Ellen Goldbaum, University at Buffalo
Cells with a nucleus (labelled blue), were originally human fibroblasts, some of which have been converted to neurons that produce serotonin (green) while others have been converted to produce another neuron-specific protein. Yellows, greens and other colors result from overlapping labels.  Credit: Jian Feng, UB.

Serotonin, a neurotransmitter involved in regulating mood and mental states, has been linked to numerous neurological and mental illnesses, including depression. But because there has been no way to obtain live human serotonin neurons to study these diseases, most serotonin research has been done on lab animals.

Now, University at Buffalo researchers have generated human from human fibroblasts, the cells that give rise to connective tissue in the body.

The researchers say that their findings are applicable to generating many other previously inaccessible human cell types, providing a boon to medical research and drug discovery.

"Our work demonstrates that the precious serotonin neurons hidden deep inside the human brain can now be created in a petri dish," said lead author Jian Feng, PhD, professor in the Department of Physiology and Biophysics in the UB School of Medicine and Biomedical Sciences. Feng also has an appointment at the Veterans Affairs Western New York Healthcare System in Buffalo.

The paper was published online on July 28. A future issue of the print journal will feature an image from the UB research on the cover. The work builds on previous studies showing that human fibroblasts can be converted to neurons, using specialized transcription factors that bind to genes, turning them on or off.

Generating serotonin neurons

The UB research demonstrates the first direct conversion of human fibroblasts into , Feng said. These "induced serotonergic neurons" behave like serotonin neurons in the .

"We know the cells were converted to serotonergic neurons because they express proteins that are only found in neurons that produce serotonin," Feng explained. "They are electrophysiologically active and demonstrate both the controlled release and the selective uptake of serotonin."

The researchers found that they could produce induced serotonergic neurons from fibroblasts by introducing four genes that control the development of serotonin neurons. "These genes change how the human genome, which is like a computer hard drive, is read, so that the cell switches from a lung cell to a serotonin neuron," said Feng.

"With this new technology, scientists can generate serotonin neurons from patients who suffer from serotonin-related ," said Feng.

While the paper focuses on converting lung fibroblasts to serotonin neurons, Feng's group at UB also has been working on generating serotonin neurons from , which would be an even easier and less invasive process.

A versatile technology

Such induced serotonin neurons would be extremely beneficial since they can be generated from individual patients suffering from illnesses involving the neurotransmitter.

"These patient-specific serotonin neurons will be very useful to the discovery of new drugs for diseases ranging from depression and anxiety to obsessive-compulsive disorder and many others," said Feng. "They will not only allow researchers to study why certain individuals develop a disease but also to find out what can be done to treat it."

Feng is optimistic that the same technology is versatile enough that it can be used to generate other new cells and tissues: "This research shows that it is possible to convert one type of cell into other types that have been difficult to access, such as neurons or heart cells," he said. "All we need to do is find out the combination of transcription factors that is necessary. Sooner or later, we will find out what those combinations are so that we can regenerate cells and eventually tissues that will mimic the real cells and tissues in the body."

Explore further: Discovery of new pathways controlling the serotonergic system

More information: "Direct conversion of human fibroblasts to induced serotonergic neurons." Molecular Psychiatry advance online publication 28 July 2015; DOI: 10.1038/mp.2015.101

Related Stories

Discovery of new pathways controlling the serotonergic system

August 8, 2014
With the aid of new methods, a research team at Karolinska Institutet have developed a detailed map of the networks of the brain that control the neurotransmitter serotonin. The study, published in the scientific journal ...

A surprising source of serotonin could affect antidepressant activity

March 30, 2015
Depression affects an estimated 350 million people worldwide and poses a major public health challenge, according to the World Health Organization. Researchers have discovered an unconventional way that serotonin is released ...

Good things come to those who wait? More serotonin, more patience

January 15, 2015
In a study published today in the journal Current Biology, a team of scientists, led by Zachary Mainen at the Champalimaud Centre for the Unknown (CCU), found a causal link between the activation of serotonin neurons and ...

Individuals with social phobia have too much serotonin—not too little

June 17, 2015
Previous studies have led researchers to believe that individuals with social anxiety disorder/ social phobia have too low levels of the neurotransmitter serotonin. A new study carried out at Uppsala University, however, ...

Serotonin mediates exercise-induced generation of new neurons

May 13, 2013
Mice that exercise in running wheels exhibit increased neurogenesis in the brain. Crucial to this process is serotonin signaling. These are the findings of a study by researchers at the Max Delbrück Center Berlin-Buch. Surprisingly, ...

Neuroscience: Why scratching makes you itch more

October 30, 2014
Turns out your mom was right: Scratching an itch only makes it worse. New research from scientists at Washington University School of Medicine in St. Louis indicates that scratching causes the brain to release serotonin, ...

Recommended for you

A peek into the interplay between sleep and wakefulness

July 20, 2018
Sleep is an autonomic process and is not always under our direct, voluntary control. Awake or asleep, we are basically under the regulation of two biological processes: sleep homeostasis, commonly known as 'sleep pressure', ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Returners
1 / 5 (1) Aug 06, 2015
This is coming...

They'll grow human neural net tissue samples and hook them up to robotics, they way they did this lab rat brain.

https://www.youtu...iF4-iu6g

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.