Researchers learn how to grow old brain cells using stem cell technology

October 8, 2015, Salk Institute
Fibroblasts (cells in connective tissue) from elderly human donors are directly converted into induced neurons. Credit: Salk Institute

For the first time, scientists can use skin samples from older patients to create brain cells without rolling back the youthfulness clock in the cells first. The new technique, which yields cells resembling those found in older people's brains, will be a boon to scientists studying age-related diseases like Alzheimer's and Parkinson's.

"This lets us keep age-related signatures in the cells so that we can more easily study the effects of aging on the brain," says Rusty Gage, a professor in the Salk Institute's Laboratory of Genetics and senior author of the paper, published October 8, 2015 in Cell Stem Cell.

"By using this powerful approach, we can begin to answer many questions about the physiology and molecular machinery of human nerve cells—not just around healthy aging but pathological aging as well," says Martin Hetzer, a Salk professor also involved in the work.

Historically, animal models—from fruit flies to mice—have been the go-to technique to study the biological consequences of aging, especially in tissues that can't be easily sampled from living humans, like the brain. Over the past few years, researchers have increasingly turned to stem cells to study various diseases in humans. For example, scientists can take patients' skin cells and turn them into induced pluripotent stem cells, which have the ability to become any cell in the body. From there, researchers can prompt the stem cells to turn into for further study. But this process—even when taking skin cells from an older human—doesn't guarantee stem cells with 'older' properties.

"As researchers started using these cells more, it became clear that during the process of reprogramming to create the cell was also rejuvenated in other ways," says Jerome Mertens, a postdoctoral research fellow and first author of the new paper.

Epigenetic signatures in older cells—patterns of chemical marks on DNA that dictate what genes are expressed when—were reset to match younger signatures in the process. This made studying the aging of the human brain difficult, since researchers couldn't create 'old' brain cells with the approach.

Gage, Hetzer, Mertens and colleagues decided to try another approach, turning to an even newer technique that lets them directly convert skin cells to neurons, creating what's called an induced neuron. "A few years ago, researchers showed that it's possible to do this, completely bypassing the stem cell precursor state," says Mertens.

Differences between neurons from old and young people only when they directly convert skin cells (left panel) into so-called induced neurons (iN; right panel). Aging differences are erased, however, when cells transit the induced pluripotent stem cell (iPSC) state. Credit: Jerome Mertens and Fred Gage

The scientists collected skin cells from 19 people, aged from birth to 89, and prompted them to turn into brain cells using both the induced technique and the direct conversion approach. Then, they compared the patterns of gene expression in the resulting neurons with cells taken from autopsied brains.

When the induced pluripotent stem cell method was used, as expected, the patterns in the neurons were indistinguishable between young and old derived samples. But brain cells that had been created using the direct conversion technique had different patterns of gene expression depending on whether they were created from young donors or older adults.

"The neurons we derived showed differences depending on donor age," says Mertens. "And they actually show changes in gene expression that have been previously implicated in brain aging." For instance, levels of a nuclear pore protein called RanBP17—whose decline is linked to nuclear transport defects that play a role in neurodegenerative diseases—were lower in the neurons derived from .

Now that the direct conversion of to neurons has been shown to retain these signatures of age, Gage expects the technique to become a valuable tool for studying aging. And, while the current work only tested its effectiveness in creating brain cells, he suspects a similar method will let researchers create aged heart and liver as well.

Explore further: New stem cell research uncovers causes of spinal muscular atrophy

More information: Cell Stem Cell, Mertens et al.: "Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects" dx.doi.org/10.1016/j.stem.2015.09.001

Related Stories

New stem cell research uncovers causes of spinal muscular atrophy

July 1, 2015
New research from the Advanced Gene and Cell Therapy Lab at Royal Holloway, University of London has used pioneering stem cell techniques to better understand why certain cells are more at risk of degenerating in spinal muscular ...

In boost for transplants, kidney tissue grown in lab

October 7, 2015
Scientists said Wednesday they had grown rudimentary human kidney tissue from stem cells, a key step towards the Holy Grail of fully-functional, lab-made transplant organs.

New measurements reveal differences between stem cells for treating retinal degeneration

July 2, 2015
By growing two types of stem cells in a "3-D culture" and measuring their ability to produce retinal cells, a team lead by St. Jude Children's Research Hospital researchers has found one cell type to be better at producing ...

Scientists accelerate aging in stem cells to study age-related diseases like Parkinson's

December 5, 2013
Stem cells hold promise for understanding and treating neurodegenerative diseases, but so far they have failed to accurately model disorders that occur late in life. A study published by Cell Press December 5th in the journal ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.