Study shows new 'driver' to assess cancer patient survival and drug sensitivity

October 1, 2015

Cancer specialists have long looked at genetic mutations and DNA copy changes to help predict patient survival and drug sensitivity. A study led by The University of Texas MD Anderson Cancer Center has opened up yet another avenue for understanding the biological reasons why some people live longer or respond better to treatment - RNA editing events.

An assessment of 6,226 samples from patients with 17 different types taken from The Cancer Genome Atlas has revealed new information about RNA editing events in tumors versus normal tissue, and provided evidence that RNA editing could selectively affect . RNA editing is the process where genetic information is altered in the RNA molecule. Once thought rare in humans and other vertebrates, RNA editing is now recognized as widespread in the human genome.

Results from the study are published in the Oct. 1 online edition of Cancer Cell.

"These results highlight RNA editing as an exciting theme for investigating cancer mechanisms, biomarkers and treatments," said Han Liang, Ph.D., associate professor of Bioinformatics and Computational Biology. "In this study, we identified an appreciable number of clinically relevant editing events, many of which are in non-coding regions."

Liang said that specific RNA editing processes, adenosine-to-inosine (A-to-I), are plentiful in the but have not been investigated in depth. The study provided new detail on this little understood biological phenomenon that may have significant clinical relevance.

"If a protein is only highly edited in the tumor proteins, but not in normal proteins, then it's possible that a specific drug could be designed to inhibit the edited mutant protein," said Liang. "Previous studies have focused on DNA mutations and mainly focused on RNA editing in normal tissues. The role of RNA editing in human cancers is only beginning to emerge from those early studies of individual patient samples in a few cancer types."

The larger scale Cancer Genome Atlas study provided the information needed to alter proteins or RNA sequences that may act as "drivers" for prognostic biomarkers or therapeutic targets. RNA editing adds another layer of complexity in the quest to predict patient survivability and suggest new therapies, said Liang.

Explore further: Lack of RNA 'editing' leads to melanoma growth and metastasis

Related Stories

Lack of RNA 'editing' leads to melanoma growth and metastasis

February 16, 2015
The importance of RNA editing in melanoma has been demonstrated by scientists at The University of Texas MD Anderson Cancer Center. The study revealed that a lack of RNA editing, a process by which information inside RNA ...

Researchers devise new method to identify disease markers

March 3, 2015
UCLA life scientists have created an accurate new method to identify genetic markers for many diseases—a significant step toward a new era of personalized medicine, tailored to each person's DNA and RNA.

New discovery of biomarker to improve diagnosis, prognosis and treatment of esophageal squamous cell carcinoma

January 6, 2014
Esophageal squamous cell carcinoma (ESCC), the major histological form of esophageal cancer, is the leading cause of cancer death worldwide. Scientists from the National University of Singapore (NUS) have discovered a biomarker, ...

Recommended for you

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

Mutant gene found to fuel cancer-promoting effects of inflammation

October 19, 2017
A human gene called p53, which is commonly known as the "guardian of the genome," is widely known to combat the formation and progression of tumors. Yet, mutant forms of p53 have been linked to more cases of human cancer ...

New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017
Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.