Circadian clock controls insulin and blood sugar in pancreas

November 5, 2015
insulin
High-resolution model of six insulin molecules assembled in a hexamer. Credit: Isaac Yonemoto/Wikipedia

A new Northwestern Medicine study has pinpointed thousands of genetic pathways an internal body clock takes to dictate how and when our pancreas must produce insulin and control blood sugar, findings that could eventually lead to new therapies for children and adults with diabetes.

The body's circadian clocks coordinate behaviors like eating and sleeping, as well as physiological activity like metabolism, with the Earth's 24-hour light-dark cycle. There's a master clock in the brain, as well as peripheral clocks located in individual organs. When genetics, environment or behavior disrupt the synchrony of these clocks, metabolic disorders can develop.

In a previous publication in Nature, Northwestern Medicine investigators showed that a in the is essential for regulating insulin secretion and balancing levels in mice. The scientists demonstrated that knocking out clock genes led to obesity and type 2 diabetes, but they still had much to learn if they wanted to manipulate clock action to treat the conditions.

"We knew that the pancreas didn't work if we removed these , but we didn't know how the genes were affecting the normal function of the pancreas," said principal investigator Dr. Joe Bass, chief of endocrinology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine physician.

Clock genes are responsible for producing transcription factors, special proteins that help tell a cell how to function.

In the new study, published Nov. 6 in Science, Bass's laboratory revealed thousands of genes in the pancreas that the clock's transcription factors control in rhythm with the planet's daily rotation from light to dark.

"We established a new gene map that shows how the entire repertoire of factors produced in the pancreas maintain and anticipate daily changes in the external environment," Bass said. "These factors are all tied to the rotation of the Earth—to the timekeeping mechanism that has evolved to control when we sleep, wake up, eat and store nutrients each day."

Bass's team focused on cells in the pancreas called beta cells, which secrete insulin into the blood stream to help the body absorb glucose—sugar—to use for energy. Using genome-wide sequencing technology on beta cells with both intact and disrupted clock gene function, the scientists were able to lay out the map of and genes.

In ongoing research, Bass's group continues to study how the body's circadian clocks interact and how their rhythm is thrown off—not just in diabetes, but also during the normal aging process and from day-to-day conditions like jetlag, stress or dietary changes.

"This study reinforces the idea that clocks operating in cells are fundamental to health," Bass said. "They represent an important untapped target for improving the functions of cells in the pancreas."

Explore further: Declining polyamine levels tied to longer circadian period

More information: "Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion" Science, www.sciencemag.org/lookup/doi/ … 1126/science.aac4250

Related Stories

Declining polyamine levels tied to longer circadian period

October 19, 2015
(HealthDay)—A group of metabolites whose levels decline as people age appear to have an effect on the circadian clock, according to a study published online Oct. 8 in Cell Metabolism.

Protein maintains double duty as key cog in body clock and metabolic control

June 4, 2015
Around-the-clock rhythms guide nearly all physiological processes in animals and plants. Each cell in the body contains special proteins that act on one another in interlocking feedback loops to generate near-24 hour oscillations ...

Recommended for you

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.