Circadian clock controls insulin and blood sugar in pancreas

November 5, 2015, Northwestern University
High-resolution model of six insulin molecules assembled in a hexamer. Credit: Isaac Yonemoto/Wikipedia

A new Northwestern Medicine study has pinpointed thousands of genetic pathways an internal body clock takes to dictate how and when our pancreas must produce insulin and control blood sugar, findings that could eventually lead to new therapies for children and adults with diabetes.

The body's circadian clocks coordinate behaviors like eating and sleeping, as well as physiological activity like metabolism, with the Earth's 24-hour light-dark cycle. There's a master clock in the brain, as well as peripheral clocks located in individual organs. When genetics, environment or behavior disrupt the synchrony of these clocks, metabolic disorders can develop.

In a previous publication in Nature, Northwestern Medicine investigators showed that a in the is essential for regulating insulin secretion and balancing levels in mice. The scientists demonstrated that knocking out clock genes led to obesity and type 2 diabetes, but they still had much to learn if they wanted to manipulate clock action to treat the conditions.

"We knew that the pancreas didn't work if we removed these , but we didn't know how the genes were affecting the normal function of the pancreas," said principal investigator Dr. Joe Bass, chief of endocrinology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine physician.

Clock genes are responsible for producing transcription factors, special proteins that help tell a cell how to function.

In the new study, published Nov. 6 in Science, Bass's laboratory revealed thousands of genes in the pancreas that the clock's transcription factors control in rhythm with the planet's daily rotation from light to dark.

"We established a new gene map that shows how the entire repertoire of factors produced in the pancreas maintain and anticipate daily changes in the external environment," Bass said. "These factors are all tied to the rotation of the Earth—to the timekeeping mechanism that has evolved to control when we sleep, wake up, eat and store nutrients each day."

Bass's team focused on cells in the pancreas called beta cells, which secrete insulin into the blood stream to help the body absorb glucose—sugar—to use for energy. Using genome-wide sequencing technology on beta cells with both intact and disrupted clock gene function, the scientists were able to lay out the map of and genes.

In ongoing research, Bass's group continues to study how the body's circadian clocks interact and how their rhythm is thrown off—not just in diabetes, but also during the normal aging process and from day-to-day conditions like jetlag, stress or dietary changes.

"This study reinforces the idea that clocks operating in cells are fundamental to health," Bass said. "They represent an important untapped target for improving the functions of cells in the pancreas."

Explore further: Declining polyamine levels tied to longer circadian period

More information: "Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion" Science, … 1126/science.aac4250

Related Stories

Declining polyamine levels tied to longer circadian period

October 19, 2015
(HealthDay)—A group of metabolites whose levels decline as people age appear to have an effect on the circadian clock, according to a study published online Oct. 8 in Cell Metabolism.

Protein maintains double duty as key cog in body clock and metabolic control

June 4, 2015
Around-the-clock rhythms guide nearly all physiological processes in animals and plants. Each cell in the body contains special proteins that act on one another in interlocking feedback loops to generate near-24 hour oscillations ...

Recommended for you

Calorie restriction trial in humans suggests benefits for age-related disease

March 22, 2018
One of the first studies to explore the effects of calorie restriction on humans showed that cutting caloric intake by 15% for 2 years slowed aging and metabolism and protected against age-related disease. The study, which ...

Boosting enzyme may help improve blood flow, fitness in elderly

March 22, 2018
As people age, their blood-vessel density and blood flow decrease, which is why it's harder to maintain muscle mass after 40 and endurance in the later decades, even with exercise. This vascular decline is also one of the ...

Scientists pinpoint cause of vascular aging in mice

March 22, 2018
We are as old as our arteries, the adage goes, so could reversing the aging of blood vessels hold the key to restoring youthful vitality?

Sulfur amino acid restriction diet triggers new blood vessel formation in mice

March 22, 2018
Putting mice on a diet containing low amounts of the essential amino acid methionine triggered the formation of new blood vessels in skeletal muscle, according to a new study from Harvard T.H. Chan School of Public Health. ...

Gradual release of immunotherapy at site of tumor surgery prevents tumors from returning

March 21, 2018
A new study by Dana-Farber Cancer Institute scientists suggests it may be possible to prevent tumors from recurring and to eradicate metastatic growths by implanting a gel containing immunotherapy during surgical removal ...

Cold can activate body's 'good' fat at a cellular level, study finds

March 21, 2018
Lower temperatures can activate the body's 'good' fat formation at a cellular level, a new study led by academics at The University of Nottingham has found.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.