Researchers show how positive stimuli provide benefits to the distracted brain

November 5, 2015
Researchers at the Beckman Institute at the University of Illinois have identified how your mind processes and differentiates between positive and negative distractions when you're trying to get a job done. Credit: Julie McMahon

You're walking up your driveway, laden down with groceries, your cell phone glued to your ear. Your mother has just shared your elderly aunt's phone number, and you're repeating it as you walk to the door of your house. Suddenly a stray dog, barking and snarling, races across the lawn. Are you able to remember the number?

Rewind the situation and, instead of the barking dog, see a cute puppy bounding across the yard. Do you remember the number now?

Researchers at the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign are investigating how your brain processes distractions when you're trying to get a job done.

Their paper, "Brain Activity and Network Interactions Linked to Valence-Related Differences in the Impact of Emotional Distraction," was recently published in Cerebral Cortex.

According to Alexandru Iordan, graduate student in neuroscience and co-author of the paper, most studies have concentrated on how negative distractions (the barking dog) impact our ability to complete a task. But few studies have focused on how positive distractions (the cute puppy) impact that ability.

"We knew from previous investigations that negative distractions interfere with our ability to stay focused on the task at hand," said Iordan. "However, we didn't know what happens with positive distractions in terms of performance and the brain mechanisms."

The research, led by Florin Dolcos, assistant professor of psychology at Illinois and member of Beckman's Cognitive Neuroscience Group, not only investigated the difference between positive and negative distractions, but also used the MRI machines at the Biomedical Imaging Center (BIC) in the Beckman Institute to evaluate how the brain responds during these distractions.

Study participants were shown a series of images of people's faces and were asked to hold them in mind for a few seconds. After a short delay, they were asked to indicate if they had seen specific faces or not. During the delay, the participants were shown a mixture of positive, neutral, and negative images; the negative and positive images were selected to produce overall similarly intense responses.

The brain responses were recorded to evaluate which parts of the brain were activated when the distracting images were shown.

The findings indicate that both positive and negative images affect the brain, but that positive distractions are linked to increased performance, compared with negative distraction. In other words, seeing the cute puppy grabs your attention, but will not interfere with completing the task at hand (remembering your aunt's phone number).

"The main result is that the positive distractions do not interfere with working memory performance," said Iordan, "in fact, they actually help compared to the negative distractions, even though they may produce equally intense emotional responses."

The explanation for this lies in the way our brains are hard-wired. "Positive stimuli are less imperative than the negative ones, because the immediate costs of not paying attention to them are typically smaller. For instance, evolutionarily, not paying attention to a potential food source is usually less dramatic than not paying attention to something dangerous, like a predator," said Dolcos.

Consistent with this idea, the study found changes in two that are involved in working memory and attention, the dorso-lateral prefrontal and the lateral parietal cortices.

"These areas stay in tune with each other when we try to keep information active in our mind," Iordan explained.

"Negative distractions strongly reduced activity in these regions. However, positive distractions had less impact on activity in these regions and increased activity in the ventro-lateral prefrontal cortex, an area associated with emotion control. This may explain why we perform better under positive distraction—because those distractions have less detrimental effects in brain areas involved in the ability to stay focused on the tasks at hand, and they increase activity in areas that are helping us to cope with distraction," said Iordan.

Another brain region, the medial prefrontal cortex, also showed responses consistent with this difference in urgency between positive and negative stimuli. "The medial prefrontal cortex is involved in emotion and self-referential processing. Here, we've seen that the responses to the negative stimuli occurred slightly earlier than the responses to the positive ones," added Iordan.

The effects were visible also in the way these different brain regions communicated with each other. "One fascinating thing about the brain is that the same region may behave differently in different contexts," said Iordan. "It's not only about what a brain region itself does, but also about how a brain region communicates with other regions in specific contexts—and this influences our behavior."

The researchers found that the medial prefrontal and the lateral parietal cortices behaved differently when subjects viewed negative as opposed to positive distractors.

"We found that the communicated more with the lateral parietal cortex under negative distraction. This increased communication does not usually happen during such tasks, because these two regions are part of different brain networks. This might also explain why negative stimuli were more impairing to working memory performance," said Iordan.

By identifying the activity in these regions, the researchers hope that they can develop methods to help those who have emotional disorders such as anxiety or depression. Dolcos hopes that future research will create training to change the response of these areas of the , in order to prevent clinical depression and anxiety.

"These areas, together with others identified in our research, could be used as markers to be monitored in interventions that target improved responses that reduce the impact of emotional challenges," said Dolcos. "It is important to find such markers for both positive and negative emotions, because they are both changed in depression and anxiety, which are characterized by increased sensitivity to negative emotions and reduced response to positive emotions.

"At the end of the day, we want to find ways to help people feel good. That's why we work on both aspects, enhance the positive and reduce the , to stay healthy. Also, a lot of what we do in our research is about prevention. We can identify such markers in people who are healthy but might be at risk, and then target these markers in interventions. We all know that, in the long run, we are better off also preventing than intervening only when people are already sick. This is also the case with emotional disorders, such as depression and anxiety" Dolcos said.

Explore further: Maltreated children's brains show 'encouraging' ability to regulate emotions

More information: Cerebral Cortex, cercor.oxfordjournals.org/cont … rcor.bhv242.abstract

Related Stories

Maltreated children's brains show 'encouraging' ability to regulate emotions

August 20, 2015
Children who have been abused or exposed to other types of trauma typically experience more intense emotions than their peers, a byproduct of living in volatile, dangerous environments.

Do not disturb: How the brain filters out distractions

July 4, 2014
You know the feeling? You are trying to dial a phone number from memory… you have to concentrate…. then someone starts shouting out other numbers nearby. In a situation like that, your brain must ignore the distraction ...

Do women experience negative emotions differently than men?

September 23, 2015
Women react differently to negative images compared to men, which may be explained by subtle differences in brain function. This neurobiological explanation for women's apparent greater sensitivity has been demonstrated by ...

Feeling anxious? Check your orbitofrontal cortex and cultivate your optimism

September 22, 2015
A new study links anxiety, a brain structure called the orbitofrontal cortex, and optimism, finding that healthy adults who have larger OFCs tend to be more optimistic and less anxious.

New study suggests a better way to deal with bad memories

April 18, 2014
(Medical Xpress)—What's one of your worst memories? How did it make you feel? According to psychologists, remembering the emotions felt during a negative personal experience, such as how sad you were or how embarrassed ...

Aggressive music related to anxiety in men

October 22, 2015
Brain imaging reveals how neural responses to different types of music really affect the emotion regulation of persons. The study concludes that men who process negative feelings with music react negatively to aggressive ...

Recommended for you

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

Researchers identify potential mediator for social memory formation

November 15, 2017
Research by a group of scientists at the Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine) have discovered that a tiny brain region plays a critical role in the formation ...

Improving clinical trials with machine learning

November 15, 2017
Machine learning could improve our ability to determine whether a new drug works in the brain, potentially enabling researchers to detect drug effects that would be missed entirely by conventional statistical tests, finds ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.