Cells from cow knee joints used to grow new cartilage tissue in laboratory

January 21, 2016, Umea University
Engineered cartilage tissue at Umeå University. Credit: Janne Ylärinne

In an effort to develop a method for cartilage tissue engineering, researchers at Umeå University in Sweden successfully used cartilage cells from cow knee joints. By creating a successful method with conditions conducive to growing healthy cartilage tissue, the findings could help lead to a new treatment cure for osteoarthritis using stem cell-based tissue engineering. This is according to a doctoral dissertation at Umeå University.

Articular cartilage is tissue that is found on all the joint surfaces in the body. Since the tissue is not supplied with any blood vessels, it has a low self-repair capacity. Joint injuries and wear often damage cartilage tissue, leading to a condition called osteoarthritis. In 2012 in Sweden, 26.6 percent of all people age 45 years or older were diagnosed with osteoarthritis. In serious cases, osteoarthritis can mean the loss of practically the entire cartilage tissue in the joint. While the condition causes pain and immobility for the individual, it also burdens society with accumulated medical costs.

"There is currently no good cure for osteoarthritis," says Janne Ylärinne, doctoral student at the Department of Integrative Medical Biology and author of the doctoral dissertation. "Surgical treatments may help when the damage to the cartilage is relatively minor, whereas joint replacement surgery is the only available solution for people with larger cartilage damage. However, artificial joints only last for a couple of decades, making the surgery unsuitable for young persons. So we need a more permanent solution."

Tissue engineering provides a possible solution to osteoarthritis. In their experiments, the researchers at Umeå University made findings that provide useful information for efforts to develop new methods to produce cartilage-like "neotissues" in a laboratory environment. In the engineering process, the cells, the signaling molecules and the scaffold, i.e. artificial support material, are combined to regenerate tissue at the damaged site in the joint. The process is difficult and much of what constitutes suitable growth factors and a mechanical loading environment is still unknown. Today, there is a huge variety of available synthetic and natural scaffolds. It is also unclear whether stem cells or primary cells are best suited.

Using primary bovine chondrocytes, i.e. from cows, the researchers improved methods to grow in a laboratory environment, producing tissue similar to tissue normally present in the human joints. In future, these results may help the development of neocartilage production for actual cartilage repair. For this, stem cells could be grown to provide unlimited amount of material for . However, more research is needed to improve the quality and make it more structurally similar to the hyaline cartilage found in the human body.

Explore further: Image: Studying astronauts' knees to rehabilitate bedridden, Earth-bound patients

Related Stories

Image: Studying astronauts' knees to rehabilitate bedridden, Earth-bound patients

October 21, 2015
This MRI scan shows a knee joint with cartilage covering the articulating joint surfaces to help the bones slide smoothly.

Sugar is the new 'solution' to osteoarthritis risk, researchers claim

January 28, 2015
Scientists in Edinburgh have come up with a new 'solution' that could reduce the risk of osteoarthritis developing in tens of thousands of people who undergo orthopaedic surgery every year – sugar.

Progress in tissue engineering to repair joint damage in osteoarthritis

June 8, 2011
Medical scientists now have "clear" evidence that the damaged cartilage tissue in osteoarthritis and other painful joint disorders can be encouraged to regrow and regenerate, and are developing tissue engineering technology ...

Surgeons implant knee cartilage grown from patient's own cells

August 20, 2015
Doctors at The Ohio State University Wexner Medical Center are the first in Ohio to use a tissue implant made from a patient's own cells to treat knee cartilage damage. Healthy cartilage is crucial to the smooth and painless ...

Stem cell discovery paves way for targeted treatment for osteoarthritis

June 9, 2015
Scientists at the University of York have made a significant advance that could make cell-based treatments for arthritis less of a lottery.

Scientists move closer to creating cartilage from stem cells

March 3, 2015
Scientists have succeeded in producing cartilage formed from embryonic stem cells that could in future be used to treat the painful joint condition osteoarthritis.

Recommended for you

Synthetic sandalwood found to prolong human hair growth

September 19, 2018
A team of researchers led by Ralf Paus of the University of Manchester has found that applying sandalwood to the scalp can prolong human hair growth. In their paper published in the journal Nature Communications, the group ...

Zombie cells found in brains of mice prior to cognitive loss

September 19, 2018
Zombie cells are the ones that can't die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, ...

Separated entry and exit doors for calcium keep energy production smooth in the powerhouses of heart cells

September 18, 2018
Stress demands the heart to work harder and faster. To keep pace, the muscle must make its fuel at an accelerated rate. Bursts of calcium entering mitochondria—the cell's powerhouses—normally help control energy output, ...

First gut bacteria may have lasting effect on ability to fight chronic diseases

September 18, 2018
New research showing that the first bacteria introduced into the gut have a lasting impact may one day allow science to adjust microbiomes—the one-of-a-kind microbial communities that live in our gastrointestinal tracts—to ...

A new defender for your sense of smell

September 18, 2018
New research from the Monell Center increases understanding of a mysterious sensory cell located in the olfactory epithelium, the patch of nasal tissue that contains odor-detecting olfactory receptor cells. The findings suggest ...

Small molecule plays big role in weaker bones as we age

September 18, 2018
With age, expression of a small molecule that can silence others goes way up while a key signaling molecule that helps stem cells make healthy bone goes down, scientists report.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.