New coronary congenital disease classification aids identification of secondary defects

January 10, 2016
Human heart. Credit: copyright American Heart Association

A new classification of coronary congenital diseases is set to help surgeons identify secondary defects in the operating theatre. The scheme is outlined in a novel European Society of Cardiology (ESC) position paper published today in Cardiovascular Research. Clinical cardiologists will also know what to look for on cardiovascular images.

"It can be difficult to spot further defects in the stressful environment of the operating theatre."

"Coronary congenital diseases affect less than 1% of newborns but are an important cause of myocardial infarction and sudden death particularly in children and competitive athletes," said Professor Cristina Basso, chairperson of the ESC Development, Anatomy and Pathology Working Group. "These conditions are often forgotten in the clinical setting since atherosclerotic disease is far more common."

Coronary arteries are the blood vessels that nourish the heart muscle. Disruption of coronary development during embryogenesis results in coronary congenital defects that change blood flow. These defects can severely affect cardiovascular health.

The paper launches a new classification of coronary artery anomalies that explains common points of origin between different coronary defects. By identifying the origin of the primary defect, doctors can evaluate the probability of finding specific secondary defects with an origin mechanistically related to the main anomaly.

First author Dr José María Pérez-Pomares said: "We have established links between coronary congenital diseases sharing a common mechanism. When operating a diagnosed coronary anomaly, it can be difficult for to spot further defects in the of the operating theatre and having an idea of the anomalies you might find can be extremely helpful. The new classification will also help clinicians using imaging to diagnose coronary artery anomalies and prevent future complications."

He added: "We have been able to produce this classification because we understand more about how coronary arteries develop in the embryo and how they relate to major diseases. The paper provides basic scientists with new, updated information on the complex embryonic development of coronary arteries to throw light on the aetiology of coronary congenital anomalies."

The authors give their expert opinion on the embryonic origin of the coronary endothelium, which is a controversial topic in cardiovascular developmental biology. Dr Pérez-Pomares said: "For a long time scientists have wanted to identify a single and unique source for coronary endothelial cells but we now know that they come from different sources that merge together. This appears to have an impact on what happens to coronary vessels during embryonic development but perhaps also in the adult."

Although not explicitly stated in the paper, the authors think that this heterogeneity of cell sources contributing to the endothelium may be important in the development of adult coronary disease, as endothelial cells with different origins might respond differentially to pathological stimuli.

The diverse origin of coronary smooth muscle cells and fibroblasts are also described. Remarkably, adventitial fibroblasts that cover the arteries share a common embryonic origin with adult interstitial fibroblasts located between the myocardial fibres which are responsible for fibrotic scar formation after myocardial infarction. This finding also suggests that embryonic cues related to coronary development could be relevant for understanding cardiac fibrosis in the adult ischaemic heart.

The authors say that this "mosaic-like embryonic development of the coronary vascular system" is key to understanding the complex spectrum of coronary artery anomalies. Dr Pérez-Pomares said: "The more we dig in, the more we have the impression that important events happening in the embryo, including the activation of regulatory gene networks, signalling molecular pathways and specific cellular mechanisms also have a clear function in adult responses to pathological stimuli."

Professor Basso concluded: "This is a translational paper written by basic scientists, including developmental biologists, anatomists and pathologists. It contains practical information to help clinicians diagnose coronary artery anomalies and prevent devastating complications including sudden death."

Explore further: Spasm at site of atherosclerotic coronary artery narrowing increases risk of heart attack

More information: Pérez-Pomares JM, de la Pompa JL, Franco D, Henderson D, Ho SY, Houyel L, Kelly RG,Sedmera D, Sheppard M, Sperling S, Thiene G, van den Hoff M, Basso C. Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology—a position statement of the development, anatomy, and pathology ESC Working Group. Cardiovascular Research. 2016: DOI: 10.1093/cvr/cvv251

Related Stories

Spasm at site of atherosclerotic coronary artery narrowing increases risk of heart attack

September 4, 2015
Researchers at Kumamoto University in Japan have found that patients with coronary spasm have a higher risk of experiencing future heart attack particularly when a spasm occurs at the site of atherosclerotic coronary artery ...

Computational fluid dynamics in coronary plaques predict coronary artery disease

April 20, 2015
Computational fluid dynamics (CFD) simulation based on 3D luminal reconstructions of the coronary artery tree can be used to analyze local flow fields and flow profiling resulting from changes in coronary artery geometry. ...

Discovery could lead to new heart disease treatments

October 19, 2015
By tracking a single cell in a growing heart, scientists from Stanford University have discovered a cell type that could repair damaged arteries.

Researchers find that coronary arteries hold heart-regenerating cells

August 20, 2014
Endothelial cells residing in the coronary arteries can function as cardiac stem cells to produce new heart muscle tissue, Vanderbilt University investigators have discovered.

Glucose variation impacts coronary plaque vulnerability

May 19, 2015
(HealthDay)—For patients with coronary artery disease (CAD) pretreated with lipid-lowering therapy, daily glucose fluctuation may affect coronary plaque vulnerability, according to a study published in the May issue of ...

Surprise origin for coronary arteries could speed advances in regenerative medicine

November 21, 2012
During embryonic development, the all-important coronary arteries arise from cells previously considered incapable of producing them, according to scientists at Albert Einstein College of Medicine of Yeshiva University. The ...

Recommended for you

New molecule may hold the key to triggering the regeneration and repair of damaged heart cells

August 21, 2017
New research has discovered a potential means to trigger damaged heart cells to self-heal. The discovery could lead to groundbreaking forms of treatment for heart diseases. For the first time, researchers have identified ...

Researchers investigate the potential of spider silk protein for engineering artificial heart

August 18, 2017
Ever more people are suffering from cardiac insufficiency, despite significant advances in preventing and minimising damage to the heart. The main cause of reduced cardiac functionality lies in the irreversible loss of cardiac ...

Lasers used to detect risk of heart attack and stroke

August 18, 2017
Patients at risk of heart attacks and strokes may be spotted earlier thanks to a diagnosis tool that uses near-infrared light to identify high-risk arterial plaques, according to research carried out at WMG, University of ...

Cholesterol crystals are sure sign a heart attack may loom

August 17, 2017
A new Michigan State University study on 240 emergency room patients shows just how much of a role a person's cholesterol plays, when in a crystallized state, during a heart attack.

How Gata4 helps mend a broken heart

August 15, 2017
During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts ...

Injectable tissue patch could help repair damaged organs

August 14, 2017
A team of U of T Engineering researchers is mending broken hearts with an expanding tissue bandage a little smaller than a postage stamp.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.